振动动力车辆网状无线传感器网络:性能评估

Alex Mouapi, N. Hakem, N. Kandil, G. Kamani
{"title":"振动动力车辆网状无线传感器网络:性能评估","authors":"Alex Mouapi, N. Hakem, N. Kandil, G. Kamani","doi":"10.1109/EEEIC.2018.8493950","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) powered by an Energy Harvesting (EH) system, known as EH-WSN are increasingly seen as the appropriate monitoring medium for environments for which, wired connections can be troublesome. This is, for example, the case of the vehicles in which many sensors are increasingly incorporated, thus resulting in a significant number of wired connections. In this paper, the vibrational-powered vehicle's sensors, through piezoelectric transducers is considered. The design method presented here is to enslave the sensor node to the amount of the extracted energy from mechanical vibrations. The piezoelectric transducer is modeled with Simscape tool of Matlab/Simulink software. The characteristics of vibrations detected in a vehicle are used as simulation parameters. The energy budget of a sensor node is quantified and used to evaluate the performance of the autonomous WSN. The range of the WSN is used as a performance metric. A maximum distance of 327 m is obtained for two sensor nodes which exchange information every 10 min. This is a promising result that can be applied in Vehicular Adhoc NETwork (VANET) to improve driving safety.","PeriodicalId":6563,"journal":{"name":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"39 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Vibrational-Powered Vehicle's Mesh Wireless Sensor Network: Performance Evaluation\",\"authors\":\"Alex Mouapi, N. Hakem, N. Kandil, G. Kamani\",\"doi\":\"10.1109/EEEIC.2018.8493950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Sensor Networks (WSNs) powered by an Energy Harvesting (EH) system, known as EH-WSN are increasingly seen as the appropriate monitoring medium for environments for which, wired connections can be troublesome. This is, for example, the case of the vehicles in which many sensors are increasingly incorporated, thus resulting in a significant number of wired connections. In this paper, the vibrational-powered vehicle's sensors, through piezoelectric transducers is considered. The design method presented here is to enslave the sensor node to the amount of the extracted energy from mechanical vibrations. The piezoelectric transducer is modeled with Simscape tool of Matlab/Simulink software. The characteristics of vibrations detected in a vehicle are used as simulation parameters. The energy budget of a sensor node is quantified and used to evaluate the performance of the autonomous WSN. The range of the WSN is used as a performance metric. A maximum distance of 327 m is obtained for two sensor nodes which exchange information every 10 min. This is a promising result that can be applied in Vehicular Adhoc NETwork (VANET) to improve driving safety.\",\"PeriodicalId\":6563,\"journal\":{\"name\":\"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"volume\":\"39 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2018.8493950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2018.8493950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由能量收集(EH)系统供电的无线传感器网络(wsn),被称为EH- wsn,越来越被认为是有线连接可能很麻烦的环境的适当监测媒介。例如,在车辆中,越来越多的传感器被纳入其中,从而导致大量的有线连接。本文研究了基于压电换能器的振动动力汽车传感器。本文提出的设计方法是使传感器节点服从于从机械振动中提取的能量。利用Matlab/Simulink软件中的Simscape工具对压电换能器进行建模。在车辆中检测到的振动特征被用作仿真参数。对传感器节点的能量收支进行量化,并用于评估自主WSN的性能。WSN的范围用作性能度量。两个传感器节点的最大距离为327 m,每10分钟交换一次信息,这是一个有希望的结果,可以应用于车辆自组网(VANET),以提高驾驶安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vibrational-Powered Vehicle's Mesh Wireless Sensor Network: Performance Evaluation
Wireless Sensor Networks (WSNs) powered by an Energy Harvesting (EH) system, known as EH-WSN are increasingly seen as the appropriate monitoring medium for environments for which, wired connections can be troublesome. This is, for example, the case of the vehicles in which many sensors are increasingly incorporated, thus resulting in a significant number of wired connections. In this paper, the vibrational-powered vehicle's sensors, through piezoelectric transducers is considered. The design method presented here is to enslave the sensor node to the amount of the extracted energy from mechanical vibrations. The piezoelectric transducer is modeled with Simscape tool of Matlab/Simulink software. The characteristics of vibrations detected in a vehicle are used as simulation parameters. The energy budget of a sensor node is quantified and used to evaluate the performance of the autonomous WSN. The range of the WSN is used as a performance metric. A maximum distance of 327 m is obtained for two sensor nodes which exchange information every 10 min. This is a promising result that can be applied in Vehicular Adhoc NETwork (VANET) to improve driving safety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future State Visualization in Power Grid Configurations of Modified SEPIC Converter with Switched Inductor Module (MSCsI) for Photovoltaic Application: Part-II Innovative Hybrid Energy Systems for Heading Towards NZEB Qualification for Existing Buildings Potential Use of Reservoirs for Mitigating Saline Intrusion in the Coastal Areas of Red River Delta Radiated Wideband IEMI: Coupling Model and Worst-Case Analysis for Smart Grid Wiring Harness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1