基于深度强化学习的自适应360度视频流速率自适应

Nuowen Kan, Junni Zou, Kexin Tang, Chenglin Li, Ning Liu, H. Xiong
{"title":"基于深度强化学习的自适应360度视频流速率自适应","authors":"Nuowen Kan, Junni Zou, Kexin Tang, Chenglin Li, Ning Liu, H. Xiong","doi":"10.1109/ICASSP.2019.8683779","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a deep reinforcement learning (DRL)-based rate adaptation algorithm for adaptive 360-degree video streaming, which is able to maximize the quality of experience of viewers by adapting the transmitted video quality to the time-varying network conditions. Specifically, to reduce the possible switching latency of the field of view (FoV), we design a new QoE metric by introducing a penalty term for the large buffer occupancy. A scalable FoV method is further proposed to alleviate the combinatorial explosion of the action space in the DRL formulation. Then, we model the rate adaptation logic as a Markov decision process and employ the DRL-based algorithm to dynamically learn the optimal video transmission rate. Simulation results show the superior performance of the proposed algorithm compared to the existing algorithms.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"75 1","pages":"4030-4034"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Deep Reinforcement Learning-based Rate Adaptation for Adaptive 360-Degree Video Streaming\",\"authors\":\"Nuowen Kan, Junni Zou, Kexin Tang, Chenglin Li, Ning Liu, H. Xiong\",\"doi\":\"10.1109/ICASSP.2019.8683779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a deep reinforcement learning (DRL)-based rate adaptation algorithm for adaptive 360-degree video streaming, which is able to maximize the quality of experience of viewers by adapting the transmitted video quality to the time-varying network conditions. Specifically, to reduce the possible switching latency of the field of view (FoV), we design a new QoE metric by introducing a penalty term for the large buffer occupancy. A scalable FoV method is further proposed to alleviate the combinatorial explosion of the action space in the DRL formulation. Then, we model the rate adaptation logic as a Markov decision process and employ the DRL-based algorithm to dynamically learn the optimal video transmission rate. Simulation results show the superior performance of the proposed algorithm compared to the existing algorithms.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"75 1\",\"pages\":\"4030-4034\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8683779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在本文中,我们提出了一种基于深度强化学习(DRL)的自适应360度视频流的速率自适应算法,该算法通过使传输的视频质量适应时变的网络条件,从而最大限度地提高观众的体验质量。具体来说,为了减少视场切换的延迟,我们设计了一个新的QoE指标,引入了对大缓冲区占用的惩罚项。进一步提出了一种可扩展的视场方法,以缓解DRL公式中动作空间的组合爆炸。然后,我们将速率自适应逻辑建模为马尔可夫决策过程,并采用基于drl的算法动态学习最优视频传输速率。仿真结果表明,该算法的性能优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Reinforcement Learning-based Rate Adaptation for Adaptive 360-Degree Video Streaming
In this paper, we propose a deep reinforcement learning (DRL)-based rate adaptation algorithm for adaptive 360-degree video streaming, which is able to maximize the quality of experience of viewers by adapting the transmitted video quality to the time-varying network conditions. Specifically, to reduce the possible switching latency of the field of view (FoV), we design a new QoE metric by introducing a penalty term for the large buffer occupancy. A scalable FoV method is further proposed to alleviate the combinatorial explosion of the action space in the DRL formulation. Then, we model the rate adaptation logic as a Markov decision process and employ the DRL-based algorithm to dynamically learn the optimal video transmission rate. Simulation results show the superior performance of the proposed algorithm compared to the existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1