基于层次模糊基函数网络的复杂制造过程智能建模

Cheol W. Lee, T. Choi, Y. Shin
{"title":"基于层次模糊基函数网络的复杂制造过程智能建模","authors":"Cheol W. Lee, T. Choi, Y. Shin","doi":"10.1115/imece2001/dsc-24590","DOIUrl":null,"url":null,"abstract":"\n This paper presents a generalized modeling approach to modeling of complex manufacturing processes. Fuzzy basis function networks with a novel training algorithm are used to capture the cause-effect relationships of complex manufacturing processes. The modeling scheme allows for utilization of the existing knowledge in the form of analytical models, experimental data and heuristic rules in developing a suitable model. The method is implemented for the surface grinding processes based on the hierarchical structure of fuzzy basis function networks proposed by Lee and Shin [21]. Process models for surface roughness and residual stress are developed based on the available grinding model structures with a small number of experimental data to demonstrate the concept. The accuracy of developed models is validated through independent sets of grinding experiments.","PeriodicalId":90691,"journal":{"name":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Modeling of Complex Manufacturing Processes Using Hierarchical Fuzzy Basis Function Networks\",\"authors\":\"Cheol W. Lee, T. Choi, Y. Shin\",\"doi\":\"10.1115/imece2001/dsc-24590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a generalized modeling approach to modeling of complex manufacturing processes. Fuzzy basis function networks with a novel training algorithm are used to capture the cause-effect relationships of complex manufacturing processes. The modeling scheme allows for utilization of the existing knowledge in the form of analytical models, experimental data and heuristic rules in developing a suitable model. The method is implemented for the surface grinding processes based on the hierarchical structure of fuzzy basis function networks proposed by Lee and Shin [21]. Process models for surface roughness and residual stress are developed based on the available grinding model structures with a small number of experimental data to demonstrate the concept. The accuracy of developed models is validated through independent sets of grinding experiments.\",\"PeriodicalId\":90691,\"journal\":{\"name\":\"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/dsc-24590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/dsc-24590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于复杂制造过程建模的广义建模方法。采用模糊基函数网络和一种新的训练算法来捕捉复杂制造过程的因果关系。该建模方案允许以分析模型、实验数据和启发式规则的形式利用现有知识来开发合适的模型。该方法是基于Lee和Shin[21]提出的模糊基函数网络的层次结构实现的。基于现有的磨削模型结构和少量的实验数据,建立了表面粗糙度和残余应力的加工模型来验证这一概念。通过独立的磨削实验验证了所建立模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Modeling of Complex Manufacturing Processes Using Hierarchical Fuzzy Basis Function Networks
This paper presents a generalized modeling approach to modeling of complex manufacturing processes. Fuzzy basis function networks with a novel training algorithm are used to capture the cause-effect relationships of complex manufacturing processes. The modeling scheme allows for utilization of the existing knowledge in the form of analytical models, experimental data and heuristic rules in developing a suitable model. The method is implemented for the surface grinding processes based on the hierarchical structure of fuzzy basis function networks proposed by Lee and Shin [21]. Process models for surface roughness and residual stress are developed based on the available grinding model structures with a small number of experimental data to demonstrate the concept. The accuracy of developed models is validated through independent sets of grinding experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STEERABLE NEEDLE TRAJECTORY FOLLOWING IN THE LUNG: TORSIONAL DEADBAND COMPENSATION AND FULL POSE ESTIMATION WITH 5DOF FEEDBACK FOR NEEDLES PASSING THROUGH FLEXIBLE ENDOSCOPES. A SERIES ELASTIC ACTUATOR DESIGN AND CONTROL IN A LINKAGE BASED HAND EXOSKELETON. OBSERVER-BASED CONTROL OF A DUAL-STAGE PIEZOELECTRIC SCANNER. HUMAN-INSPIRED ALGEBRAIC CURVES FOR WEARABLE ROBOT CONTROL. CONTROLLING PHYSICAL INTERACTIONS: HUMANS DO NOT MINIMIZE MUSCLE EFFORT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1