基于扩展FIR/卡尔曼滤波的室内机器人三角定位

Moises Granados-Cruz, Juan J. Pomarico-Franquiz, Y. Shmaliy, L. Morales-Mendoza
{"title":"基于扩展FIR/卡尔曼滤波的室内机器人三角定位","authors":"Moises Granados-Cruz, Juan J. Pomarico-Franquiz, Y. Shmaliy, L. Morales-Mendoza","doi":"10.1109/ICEEE.2014.6978256","DOIUrl":null,"url":null,"abstract":"A combined extended finite impulse response (EFIR) and Kalman (EFIR/Kalman) algorithm is proposed for mobile robot localization via triangulation. A distinctive advantage of the EFIR algorithm is that it completely ignores the noise statistics which are typically not well known to the engineer. Instead, it requires an optimal averaging interval of Nopt points. To run this algorithm, several initial Kalman estimates are used for the roughly set noise covariances. We consider a mobile robot travelling on an indoor floorspace and localized via triangulation with three nodes in a view. We show that the EFIR/Kalman filter is more accurate than the extended Kalman filter under the uncertain noise statistics and initial state.","PeriodicalId":6661,"journal":{"name":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"80 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Triangulation-based indoor robot localization using extended FIR/Kalman filtering\",\"authors\":\"Moises Granados-Cruz, Juan J. Pomarico-Franquiz, Y. Shmaliy, L. Morales-Mendoza\",\"doi\":\"10.1109/ICEEE.2014.6978256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A combined extended finite impulse response (EFIR) and Kalman (EFIR/Kalman) algorithm is proposed for mobile robot localization via triangulation. A distinctive advantage of the EFIR algorithm is that it completely ignores the noise statistics which are typically not well known to the engineer. Instead, it requires an optimal averaging interval of Nopt points. To run this algorithm, several initial Kalman estimates are used for the roughly set noise covariances. We consider a mobile robot travelling on an indoor floorspace and localized via triangulation with three nodes in a view. We show that the EFIR/Kalman filter is more accurate than the extended Kalman filter under the uncertain noise statistics and initial state.\",\"PeriodicalId\":6661,\"journal\":{\"name\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"80 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2014.6978256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2014.6978256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对移动机器人三角定位问题,提出了一种扩展有限脉冲响应(EFIR)和卡尔曼(EFIR/Kalman)联合算法。EFIR算法的一个显著优点是它完全忽略了工程师通常不知道的噪声统计量。相反,它需要Nopt点的最优平均区间。为了运行该算法,对粗略设置的噪声协方差使用了几个初始卡尔曼估计。我们考虑一个移动机器人在室内地板空间上行走,并通过三角测量在视图中有三个节点进行定位。结果表明,在噪声统计量和初始状态不确定的情况下,EFIR/卡尔曼滤波比扩展卡尔曼滤波更精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Triangulation-based indoor robot localization using extended FIR/Kalman filtering
A combined extended finite impulse response (EFIR) and Kalman (EFIR/Kalman) algorithm is proposed for mobile robot localization via triangulation. A distinctive advantage of the EFIR algorithm is that it completely ignores the noise statistics which are typically not well known to the engineer. Instead, it requires an optimal averaging interval of Nopt points. To run this algorithm, several initial Kalman estimates are used for the roughly set noise covariances. We consider a mobile robot travelling on an indoor floorspace and localized via triangulation with three nodes in a view. We show that the EFIR/Kalman filter is more accurate than the extended Kalman filter under the uncertain noise statistics and initial state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a vision algorithm for close-range relative navigation of underwater vehicles Fabrication of Pure Tin Oxide Pellets at Different Annealed Temperatures for CO and C3H8 Gas Sensors Study of sensing properties of ZnTe synthesized by mechanosynthesis for detecting gas CO ECG Arrhythmia Classification for Comparing Pre-Trained Deep Learning Models Reduction Of Energy Consumption in NoC Through The Application Of Novel Encoding Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1