三维网络SiC/Cu复合材料的制备及性能研究

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Composite Interfaces Pub Date : 2023-04-11 DOI:10.1080/09276440.2023.2201742
Jiaqi Chang, Qingming Chang, Xiaowei Gong, Ke Li, Siqian Bao, Yawei Li, Xiong Liang
{"title":"三维网络SiC/Cu复合材料的制备及性能研究","authors":"Jiaqi Chang, Qingming Chang, Xiaowei Gong, Ke Li, Siqian Bao, Yawei Li, Xiong Liang","doi":"10.1080/09276440.2023.2201742","DOIUrl":null,"url":null,"abstract":"ABSTRACT 3D-Network SiC ceramic was prepared using a polymer sponge replica technique with SiC ceramic slurry (77 wt% solid content). The triangular hole defects in 3D-Network SiC ceramic were reduced and the mechanical properties were improved by high-pressure spraying and vacuum infiltration. The 3D-Network SiC/Cu composite material was fabricated by the gravity casting technique, and the interfacial bonding and abrasion resistance of the composites were tested and analyzed. The results show that the compressive strength of high-pressure sprayed 3D-Network SiC ceramic increased slightly from 0.67 Mpa to 0.74 Mpa due to the triangular hole defects left when the polymer sponge was decomposed at high temperatures. The mechanical properties of 3D-Network SiC ceramics that have been vacuum infiltrated in alumina and a mixture composed of alumina and andalusite were greatly improved, and their compressive strength was increased to 1.02Mpa and 1.57Mpa, respectively. The interface between SiC and Cu in the 3D-Network SiC/Cu composites prepared by different processes shows excellent bonding, and the abrasion resistance of the 3D-Network SiC/Cu composites prepared by different processes was 2.02–9.18 times that of pure copper respectively. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"80 1","pages":"1227 - 1246"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the fabrication and performance of 3D-Network SiC/Cu composites\",\"authors\":\"Jiaqi Chang, Qingming Chang, Xiaowei Gong, Ke Li, Siqian Bao, Yawei Li, Xiong Liang\",\"doi\":\"10.1080/09276440.2023.2201742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT 3D-Network SiC ceramic was prepared using a polymer sponge replica technique with SiC ceramic slurry (77 wt% solid content). The triangular hole defects in 3D-Network SiC ceramic were reduced and the mechanical properties were improved by high-pressure spraying and vacuum infiltration. The 3D-Network SiC/Cu composite material was fabricated by the gravity casting technique, and the interfacial bonding and abrasion resistance of the composites were tested and analyzed. The results show that the compressive strength of high-pressure sprayed 3D-Network SiC ceramic increased slightly from 0.67 Mpa to 0.74 Mpa due to the triangular hole defects left when the polymer sponge was decomposed at high temperatures. The mechanical properties of 3D-Network SiC ceramics that have been vacuum infiltrated in alumina and a mixture composed of alumina and andalusite were greatly improved, and their compressive strength was increased to 1.02Mpa and 1.57Mpa, respectively. The interface between SiC and Cu in the 3D-Network SiC/Cu composites prepared by different processes shows excellent bonding, and the abrasion resistance of the 3D-Network SiC/Cu composites prepared by different processes was 2.02–9.18 times that of pure copper respectively. GRAPHICAL ABSTRACT\",\"PeriodicalId\":10653,\"journal\":{\"name\":\"Composite Interfaces\",\"volume\":\"80 1\",\"pages\":\"1227 - 1246\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09276440.2023.2201742\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2201742","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

摘要:采用聚合物海绵复模技术,采用固含量为77%的SiC陶瓷浆料制备了三维网络SiC陶瓷。采用高压喷涂和真空浸渗的方法,减少了3D-Network SiC陶瓷的三角孔缺陷,提高了陶瓷的力学性能。采用重力铸造技术制备了三维网络SiC/Cu复合材料,并对复合材料的界面结合性能和耐磨性进行了测试和分析。结果表明:高压喷涂3D-Network SiC陶瓷的抗压强度由0.67 Mpa略微提高到0.74 Mpa,这是由于聚合物海绵在高温下分解时留下的三角孔缺陷;在氧化铝和氧化铝与红柱石的混合物中真空浸渍后,3D-Network SiC陶瓷的力学性能得到了很大的改善,抗压强度分别提高到1.02Mpa和1.57Mpa。不同工艺制备的3D-Network SiC/Cu复合材料中,SiC与Cu的界面结合良好,其耐磨性分别是纯铜的2.02 ~ 9.18倍。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the fabrication and performance of 3D-Network SiC/Cu composites
ABSTRACT 3D-Network SiC ceramic was prepared using a polymer sponge replica technique with SiC ceramic slurry (77 wt% solid content). The triangular hole defects in 3D-Network SiC ceramic were reduced and the mechanical properties were improved by high-pressure spraying and vacuum infiltration. The 3D-Network SiC/Cu composite material was fabricated by the gravity casting technique, and the interfacial bonding and abrasion resistance of the composites were tested and analyzed. The results show that the compressive strength of high-pressure sprayed 3D-Network SiC ceramic increased slightly from 0.67 Mpa to 0.74 Mpa due to the triangular hole defects left when the polymer sponge was decomposed at high temperatures. The mechanical properties of 3D-Network SiC ceramics that have been vacuum infiltrated in alumina and a mixture composed of alumina and andalusite were greatly improved, and their compressive strength was increased to 1.02Mpa and 1.57Mpa, respectively. The interface between SiC and Cu in the 3D-Network SiC/Cu composites prepared by different processes shows excellent bonding, and the abrasion resistance of the 3D-Network SiC/Cu composites prepared by different processes was 2.02–9.18 times that of pure copper respectively. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composite Interfaces
Composite Interfaces 工程技术-材料科学:复合
CiteScore
5.00
自引率
3.80%
发文量
58
审稿时长
3 months
期刊介绍: Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories. Composite Interfaces covers a wide range of topics including - but not restricted to: -surface treatment of reinforcing fibers and fillers- effect of interface structure on mechanical properties, physical properties, curing and rheology- coupling agents- synthesis of matrices designed to promote adhesion- molecular and atomic characterization of interfaces- interfacial morphology- dynamic mechanical study of interphases- interfacial compatibilization- adsorption- tribology- composites with organic, inorganic and metallic materials- composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields
期刊最新文献
Characterization of composite materials with recycled wind turbine blade additives using atomic force microscopy Does a polymer film due to Rayleigh-instability affect interfacial properties measured by microbond test? Influence of argon plasma treatment on interfacial performance of CFRP at high temperature Hygrothermal effect and statistical analysis of the interfacial performance of nano and microscale polymer composites Current trends and future directions in Si-based MXene composites for enhanced lithium-ion battery applications: a comperehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1