基于冲突图的非饱和IEEE 802.11网络吞吐量估计马尔可夫模型

Marija Stojanova, Thomas Begin, A. Busson
{"title":"基于冲突图的非饱和IEEE 802.11网络吞吐量估计马尔可夫模型","authors":"Marija Stojanova, Thomas Begin, A. Busson","doi":"10.23919/WIOPT.2017.7959900","DOIUrl":null,"url":null,"abstract":"WLANs (Wireless Local Area Networks) have become ubiquitous in our everyday life, and are mostly based on IEEE 802.11 standards. In this paper, we consider the performance evaluation of an arbitrary-topology unsaturated network based on the IEEE 802.11 DCF. We present a conflict graph-based modeling approach to discover the attainable throughput of each node. Our model consists of a single Markov chain which aims at describing, at a high-level of abstraction, the current state of the entire wireless network. Owing to its low complexity, our approach is simple to implement, can cope with medium sized networks, and its execution speed is fast. We validate its accuracy against a discrete-event simulator. Results show that our approach is typically accurate, with associated relative errors generally less than 15%, and that it captures complex phenomena such as node starvation. We investigate two potential applications of our proposed approach in which, starting with a given network, we improve its performance in terms of overall throughput or fairness by throttling the throughput demand of a node, or by turning a node off altogether.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Conflict graph-based Markovian model to estimate throughput in unsaturated IEEE 802.11 networks\",\"authors\":\"Marija Stojanova, Thomas Begin, A. Busson\",\"doi\":\"10.23919/WIOPT.2017.7959900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WLANs (Wireless Local Area Networks) have become ubiquitous in our everyday life, and are mostly based on IEEE 802.11 standards. In this paper, we consider the performance evaluation of an arbitrary-topology unsaturated network based on the IEEE 802.11 DCF. We present a conflict graph-based modeling approach to discover the attainable throughput of each node. Our model consists of a single Markov chain which aims at describing, at a high-level of abstraction, the current state of the entire wireless network. Owing to its low complexity, our approach is simple to implement, can cope with medium sized networks, and its execution speed is fast. We validate its accuracy against a discrete-event simulator. Results show that our approach is typically accurate, with associated relative errors generally less than 15%, and that it captures complex phenomena such as node starvation. We investigate two potential applications of our proposed approach in which, starting with a given network, we improve its performance in terms of overall throughput or fairness by throttling the throughput demand of a node, or by turning a node off altogether.\",\"PeriodicalId\":6630,\"journal\":{\"name\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WIOPT.2017.7959900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

无线局域网(wlan)在我们的日常生活中已经无处不在,它主要基于IEEE 802.11标准。本文考虑了基于IEEE 802.11 DCF的任意拓扑不饱和网络的性能评估。我们提出了一种基于冲突图的建模方法来发现每个节点的可达到吞吐量。我们的模型由一个单一的马尔可夫链组成,其目的是在抽象的高层上描述整个无线网络的当前状态。由于复杂度低,我们的方法实现简单,可以应付中等规模的网络,并且执行速度快。我们通过一个离散事件模拟器验证了它的准确性。结果表明,我们的方法通常是准确的,相关的相对误差通常小于15%,并且它捕获了节点饥饿等复杂现象。我们研究了我们提出的方法的两个潜在应用,其中,从给定的网络开始,我们通过限制节点的吞吐量需求或完全关闭节点来提高其在总体吞吐量或公平性方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conflict graph-based Markovian model to estimate throughput in unsaturated IEEE 802.11 networks
WLANs (Wireless Local Area Networks) have become ubiquitous in our everyday life, and are mostly based on IEEE 802.11 standards. In this paper, we consider the performance evaluation of an arbitrary-topology unsaturated network based on the IEEE 802.11 DCF. We present a conflict graph-based modeling approach to discover the attainable throughput of each node. Our model consists of a single Markov chain which aims at describing, at a high-level of abstraction, the current state of the entire wireless network. Owing to its low complexity, our approach is simple to implement, can cope with medium sized networks, and its execution speed is fast. We validate its accuracy against a discrete-event simulator. Results show that our approach is typically accurate, with associated relative errors generally less than 15%, and that it captures complex phenomena such as node starvation. We investigate two potential applications of our proposed approach in which, starting with a given network, we improve its performance in terms of overall throughput or fairness by throttling the throughput demand of a node, or by turning a node off altogether.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote speaker Keynote speaker Ad-Hoc, Mobile, and Wireless Networks: 19th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2020, Bari, Italy, October 19–21, 2020, Proceedings Retraction Note to: Mobility Aided Context-Aware Forwarding Approach for Destination-Less OppNets Ad-Hoc, Mobile, and Wireless Networks: 18th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2019, Luxembourg, Luxembourg, October 1–3, 2019, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1