A. Schmalzer, J. Yeager, P. Bowden, D. Guildenbecher, J. Olles
{"title":"实验指导下多碎片撞击pbx的模拟","authors":"A. Schmalzer, J. Yeager, P. Bowden, D. Guildenbecher, J. Olles","doi":"10.1115/hvis2019-108","DOIUrl":null,"url":null,"abstract":"\n Multi-fragment impact of energetic materials can provide the impetus initiation and growth to detonation when shockwaves from these discrete fragments collide. The Sandia hydrocode CTH is used with reactive burn modeling to identify relationships between spherical fragment separation distances, variable fragment arrival timing, and initiability in energetic materials. This work demonstrates that detonation is most likely to occur is when multiple fragments collide with a surface simultaneously, because of the cumulative pressure rise of two equal colliding waves compared to the colliding waves generated by fragment impacts offset in time.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiment guided simulation of multi-fragment impact into PBXs\",\"authors\":\"A. Schmalzer, J. Yeager, P. Bowden, D. Guildenbecher, J. Olles\",\"doi\":\"10.1115/hvis2019-108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Multi-fragment impact of energetic materials can provide the impetus initiation and growth to detonation when shockwaves from these discrete fragments collide. The Sandia hydrocode CTH is used with reactive burn modeling to identify relationships between spherical fragment separation distances, variable fragment arrival timing, and initiability in energetic materials. This work demonstrates that detonation is most likely to occur is when multiple fragments collide with a surface simultaneously, because of the cumulative pressure rise of two equal colliding waves compared to the colliding waves generated by fragment impacts offset in time.\",\"PeriodicalId\":6596,\"journal\":{\"name\":\"2019 15th Hypervelocity Impact Symposium\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th Hypervelocity Impact Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/hvis2019-108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experiment guided simulation of multi-fragment impact into PBXs
Multi-fragment impact of energetic materials can provide the impetus initiation and growth to detonation when shockwaves from these discrete fragments collide. The Sandia hydrocode CTH is used with reactive burn modeling to identify relationships between spherical fragment separation distances, variable fragment arrival timing, and initiability in energetic materials. This work demonstrates that detonation is most likely to occur is when multiple fragments collide with a surface simultaneously, because of the cumulative pressure rise of two equal colliding waves compared to the colliding waves generated by fragment impacts offset in time.