Ge在直接Si衬底上的液相结晶作为GaAs应用的模板

Sandeep Kumar, S. Avasthi
{"title":"Ge在直接Si衬底上的液相结晶作为GaAs应用的模板","authors":"Sandeep Kumar, S. Avasthi","doi":"10.1109/PVSC45281.2020.9300965","DOIUrl":null,"url":null,"abstract":"The direct growth of Ge over Si substrates provides a complementary metal-oxide-semiconductor compatible low-cost way that can be used as a template for GaAs based solar cell and other applications. In this work, the previously reported liquid phase crystallization (LPC) process from our group is used to grow crystalline Ge directly over the Si substrate. No buffer layer is used to relax the lattice mismatch induced strain. The results show a crystalline growth of Ge that is confirmed from x-ray diffraction measurement. The surface morphology is investigated using scanning electron microscope, showing large grain growth in the range from 2–10 μm. The transmission electron microscope investigations show that the threading dislocation densities extend up to ~ 250 nm from the Si/Ge interface. After ~ 250 nm from the Si/Ge interface, the Ge film becomes relaxed and hence, can be used as a template for GaAs based solar cell devices.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"84 1","pages":"1987-1989"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid phase crystallization of Ge over direct Si substrate as a template for GaAs applications\",\"authors\":\"Sandeep Kumar, S. Avasthi\",\"doi\":\"10.1109/PVSC45281.2020.9300965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The direct growth of Ge over Si substrates provides a complementary metal-oxide-semiconductor compatible low-cost way that can be used as a template for GaAs based solar cell and other applications. In this work, the previously reported liquid phase crystallization (LPC) process from our group is used to grow crystalline Ge directly over the Si substrate. No buffer layer is used to relax the lattice mismatch induced strain. The results show a crystalline growth of Ge that is confirmed from x-ray diffraction measurement. The surface morphology is investigated using scanning electron microscope, showing large grain growth in the range from 2–10 μm. The transmission electron microscope investigations show that the threading dislocation densities extend up to ~ 250 nm from the Si/Ge interface. After ~ 250 nm from the Si/Ge interface, the Ge film becomes relaxed and hence, can be used as a template for GaAs based solar cell devices.\",\"PeriodicalId\":6773,\"journal\":{\"name\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"84 1\",\"pages\":\"1987-1989\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC45281.2020.9300965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锗在硅衬底上的直接生长提供了一种互补的金属氧化物半导体兼容的低成本方法,可以用作基于砷化镓的太阳能电池和其他应用的模板。在这项工作中,我们小组先前报道的液相结晶(LPC)工艺被用于直接在Si衬底上生长结晶Ge。没有使用缓冲层来松弛晶格失配引起的应变。结果表明,x射线衍射测量证实了锗的结晶生长。通过扫描电镜观察其表面形貌,发现在2 ~ 10 μm范围内有较大的晶粒生长。透射电镜观察表明,在Si/Ge界面处,位错密度延伸至~ 250 nm处。在距离Si/Ge界面~ 250 nm处,Ge膜变得松弛,因此可以用作GaAs基太阳能电池器件的模板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Liquid phase crystallization of Ge over direct Si substrate as a template for GaAs applications
The direct growth of Ge over Si substrates provides a complementary metal-oxide-semiconductor compatible low-cost way that can be used as a template for GaAs based solar cell and other applications. In this work, the previously reported liquid phase crystallization (LPC) process from our group is used to grow crystalline Ge directly over the Si substrate. No buffer layer is used to relax the lattice mismatch induced strain. The results show a crystalline growth of Ge that is confirmed from x-ray diffraction measurement. The surface morphology is investigated using scanning electron microscope, showing large grain growth in the range from 2–10 μm. The transmission electron microscope investigations show that the threading dislocation densities extend up to ~ 250 nm from the Si/Ge interface. After ~ 250 nm from the Si/Ge interface, the Ge film becomes relaxed and hence, can be used as a template for GaAs based solar cell devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical Characterization of Defects in High-efficiency (Ag, Cu)(In, Ga)Se2 Optimization of Light-Induced Al Plating on Si for Substitution of Ag in Si Solar Cells Development of 2-sided polysilicon passivating contacts for co-plated bifacial n-PERT cells Potential of Solar Energy in Africa: Does Knowledge, Technology, Policy and Economic Match Investigating Degradation in Perovskite and Perovskite/Silicon Tandem Solar Cells Using Spatially and Spectrally-Resolved Absorptivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1