{"title":"超高速撞击中尺度模拟与碎片生成","authors":"Stephanie N. Q. Bouchey, J. Hollenshead","doi":"10.1115/hvis2019-017","DOIUrl":null,"url":null,"abstract":"\n Material fragmentation after a hypervelocity impact is of interest to predictive electro-optical and infrared (EO/IR) modeling. Successful comparisons with data require that submicron fragments are generated in such impacts; however, experimental data has so far been unable to produce fragments of this scale [e.g., 1-3]. This effort investigated the generation of predicted debris from hypervelocity impact of a sphere on a flat, semi-infinite plate. It is hypothesized that explicit modeling of grains, especially in the presence of void and varying grain properties, may lead to differences in predicted strain rates (locally higher) associated with the grain boundaries. Such an effect may lead to smaller predicted fragments sizes than when using the traditional bulk modeling approach and may provide improved understanding of fragmentation modeling in hypervelocity impacts. Comparisons of predicted strain rates at failure (a proxy for fragment size) and material temperature were made between simulations run using a bulk modeling approach and a mesoscale grain modeling approach.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoscale modeling and debris generation in hypervelocity impacts\",\"authors\":\"Stephanie N. Q. Bouchey, J. Hollenshead\",\"doi\":\"10.1115/hvis2019-017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Material fragmentation after a hypervelocity impact is of interest to predictive electro-optical and infrared (EO/IR) modeling. Successful comparisons with data require that submicron fragments are generated in such impacts; however, experimental data has so far been unable to produce fragments of this scale [e.g., 1-3]. This effort investigated the generation of predicted debris from hypervelocity impact of a sphere on a flat, semi-infinite plate. It is hypothesized that explicit modeling of grains, especially in the presence of void and varying grain properties, may lead to differences in predicted strain rates (locally higher) associated with the grain boundaries. Such an effect may lead to smaller predicted fragments sizes than when using the traditional bulk modeling approach and may provide improved understanding of fragmentation modeling in hypervelocity impacts. Comparisons of predicted strain rates at failure (a proxy for fragment size) and material temperature were made between simulations run using a bulk modeling approach and a mesoscale grain modeling approach.\",\"PeriodicalId\":6596,\"journal\":{\"name\":\"2019 15th Hypervelocity Impact Symposium\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th Hypervelocity Impact Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/hvis2019-017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mesoscale modeling and debris generation in hypervelocity impacts
Material fragmentation after a hypervelocity impact is of interest to predictive electro-optical and infrared (EO/IR) modeling. Successful comparisons with data require that submicron fragments are generated in such impacts; however, experimental data has so far been unable to produce fragments of this scale [e.g., 1-3]. This effort investigated the generation of predicted debris from hypervelocity impact of a sphere on a flat, semi-infinite plate. It is hypothesized that explicit modeling of grains, especially in the presence of void and varying grain properties, may lead to differences in predicted strain rates (locally higher) associated with the grain boundaries. Such an effect may lead to smaller predicted fragments sizes than when using the traditional bulk modeling approach and may provide improved understanding of fragmentation modeling in hypervelocity impacts. Comparisons of predicted strain rates at failure (a proxy for fragment size) and material temperature were made between simulations run using a bulk modeling approach and a mesoscale grain modeling approach.