G. Park, Seoyoon Kwon, Minsoo Ji, Sujin Lee, Suin Choi, M. Kim, Baehyun Min
{"title":"利用深度学习算法生成高分辨率测井数据","authors":"G. Park, Seoyoon Kwon, Minsoo Ji, Sujin Lee, Suin Choi, M. Kim, Baehyun Min","doi":"10.32390/ksmer.2022.59.5.543","DOIUrl":null,"url":null,"abstract":"This study proposed a deep-learning-based approach that generates synthetic high-resolution log data from original-resolution log data for accurate reservoir characterization, where the resolution of the synthetic data is comparable to that of core data. The reliability of the proposed approach was tested with application to the Volve oil field in Norway using three deep-learning algorithms (i.e., deep neural network, convolutional neural network, and long short-term memory). These deep-learning algorithms were employed to generate high-resolution sonic log data from other log-type data. The overall performance of each algorithm was acceptable. In particular, the long short-term memory algorithm yields a coefficient of determination greater than 0.9 when the high-to-original-resolution ratios are two, five, and ten. We anticipate that the proposed model can be used to derive logging-based reservoir parameters with a resolution that is comparable to that of core-based reservoir parameters.","PeriodicalId":17454,"journal":{"name":"Journal of the Korean Society of Mineral and Energy Resources Engineers","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of High-Resolution Well Log Data by Using a Deep-Learning Algorithm\",\"authors\":\"G. Park, Seoyoon Kwon, Minsoo Ji, Sujin Lee, Suin Choi, M. Kim, Baehyun Min\",\"doi\":\"10.32390/ksmer.2022.59.5.543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposed a deep-learning-based approach that generates synthetic high-resolution log data from original-resolution log data for accurate reservoir characterization, where the resolution of the synthetic data is comparable to that of core data. The reliability of the proposed approach was tested with application to the Volve oil field in Norway using three deep-learning algorithms (i.e., deep neural network, convolutional neural network, and long short-term memory). These deep-learning algorithms were employed to generate high-resolution sonic log data from other log-type data. The overall performance of each algorithm was acceptable. In particular, the long short-term memory algorithm yields a coefficient of determination greater than 0.9 when the high-to-original-resolution ratios are two, five, and ten. We anticipate that the proposed model can be used to derive logging-based reservoir parameters with a resolution that is comparable to that of core-based reservoir parameters.\",\"PeriodicalId\":17454,\"journal\":{\"name\":\"Journal of the Korean Society of Mineral and Energy Resources Engineers\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society of Mineral and Energy Resources Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32390/ksmer.2022.59.5.543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Mineral and Energy Resources Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32390/ksmer.2022.59.5.543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generation of High-Resolution Well Log Data by Using a Deep-Learning Algorithm
This study proposed a deep-learning-based approach that generates synthetic high-resolution log data from original-resolution log data for accurate reservoir characterization, where the resolution of the synthetic data is comparable to that of core data. The reliability of the proposed approach was tested with application to the Volve oil field in Norway using three deep-learning algorithms (i.e., deep neural network, convolutional neural network, and long short-term memory). These deep-learning algorithms were employed to generate high-resolution sonic log data from other log-type data. The overall performance of each algorithm was acceptable. In particular, the long short-term memory algorithm yields a coefficient of determination greater than 0.9 when the high-to-original-resolution ratios are two, five, and ten. We anticipate that the proposed model can be used to derive logging-based reservoir parameters with a resolution that is comparable to that of core-based reservoir parameters.