基于超声机载声纳和计算机视觉技术的铁路动铁挠度测量

IF 1 4区 材料科学 Q3 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Research in Nondestructive Evaluation Pub Date : 2022-11-03 DOI:10.1080/09349847.2022.2136808
Ali Zare Hosseinzadeh, D. Datta, F. Lanza di Scalea
{"title":"基于超声机载声纳和计算机视觉技术的铁路动铁挠度测量","authors":"Ali Zare Hosseinzadeh, D. Datta, F. Lanza di Scalea","doi":"10.1080/09349847.2022.2136808","DOIUrl":null,"url":null,"abstract":"ABSTRACT It is known in the railroad maintenance engineering community that the deflection of railroad ties is an indicator of the quality of the tie–ballast interface, whose deterioration may cause dangerous train derailments. A new technology is proposed to reconstruct the full-field deflection profile of railroad ties in-motion by means of non-contact ultrasonic testing and computer vision techniques. The sensing layout consists of an array of air-coupled capacitive transducers (operated in pulse-echo sonar-based ranging mode) and a high frame-rate camera, rigidly connected to the main frame of a moving train car. The acquisition system is programmed such that the synchronized waveforms and images are collected and saved as train car moves. In the processing stage, a supervised machine learning-based image classification approach is developed to demarcate the tie boundaries. For this purpose, the Speeded-Up Robust Features (SURF) and Bag of Visual Words (BOVW) algorithms are employed to encode images into condensed feature vectors, which are subsequently fed into the Support Vector Machine (SVM) to train a classifier. The relative deflections of the identified ties are eventually computed by tracking the time-of-flight of the reflected waves from the surfaces flagged as tie. An image processing technique is also developed to estimate the spatial resolution of the tracking system, required to reconstruct the full-field deflection profile of the scanned ties. The importance of such a technique is stressed if the test run is performed without any dedicated positioning system. The proposed ‘tie sonar’ system was prototyped and used to reconstruct the deflection profile of the ties scanned during a series of test runs conducted at slow (walking) speed at the Rail Defect Testing Facility (RDTF) of UC San Diego as well as a BNSF yard in San Diego, CA, with a realistic train load. Further developments of this system should include a performance evaluation at higher speeds (e.g., revenue speed).","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"76 1","pages":"1 - 21"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"In-Motion Railroad Tie Deflection Measurement via Ultrasonic Airborne Sonar and Computer Vision Techniques\",\"authors\":\"Ali Zare Hosseinzadeh, D. Datta, F. Lanza di Scalea\",\"doi\":\"10.1080/09349847.2022.2136808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT It is known in the railroad maintenance engineering community that the deflection of railroad ties is an indicator of the quality of the tie–ballast interface, whose deterioration may cause dangerous train derailments. A new technology is proposed to reconstruct the full-field deflection profile of railroad ties in-motion by means of non-contact ultrasonic testing and computer vision techniques. The sensing layout consists of an array of air-coupled capacitive transducers (operated in pulse-echo sonar-based ranging mode) and a high frame-rate camera, rigidly connected to the main frame of a moving train car. The acquisition system is programmed such that the synchronized waveforms and images are collected and saved as train car moves. In the processing stage, a supervised machine learning-based image classification approach is developed to demarcate the tie boundaries. For this purpose, the Speeded-Up Robust Features (SURF) and Bag of Visual Words (BOVW) algorithms are employed to encode images into condensed feature vectors, which are subsequently fed into the Support Vector Machine (SVM) to train a classifier. The relative deflections of the identified ties are eventually computed by tracking the time-of-flight of the reflected waves from the surfaces flagged as tie. An image processing technique is also developed to estimate the spatial resolution of the tracking system, required to reconstruct the full-field deflection profile of the scanned ties. The importance of such a technique is stressed if the test run is performed without any dedicated positioning system. The proposed ‘tie sonar’ system was prototyped and used to reconstruct the deflection profile of the ties scanned during a series of test runs conducted at slow (walking) speed at the Rail Defect Testing Facility (RDTF) of UC San Diego as well as a BNSF yard in San Diego, CA, with a realistic train load. Further developments of this system should include a performance evaluation at higher speeds (e.g., revenue speed).\",\"PeriodicalId\":54493,\"journal\":{\"name\":\"Research in Nondestructive Evaluation\",\"volume\":\"76 1\",\"pages\":\"1 - 21\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09349847.2022.2136808\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2022.2136808","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 2

摘要

摘要在铁路维修工程界,众所周知,钢轨的挠度是衡量系碴界面质量的一个指标,其恶化可能会导致危险的列车脱轨。提出了一种利用非接触式超声检测和计算机视觉技术重建运动中铁路枕木全场挠度曲线的新技术。传感布局由一组空气耦合电容式换能器(以脉冲回波声纳为基础的测距模式运行)和一个高帧率摄像机组成,牢固地连接到移动的火车车厢的主框架上。对采集系统进行了编程,使同步波形和图像在列车行驶时被采集和保存。在处理阶段,提出了一种基于监督机器学习的图像分类方法来划分边界。为此,采用加速鲁棒特征(SURF)和视觉词包(BOVW)算法将图像编码为浓缩特征向量,然后将其输入支持向量机(SVM)来训练分类器。通过跟踪从标记为领带的表面反射波的飞行时间,最终计算出已识别的领带的相对偏转。此外,还开发了一种图像处理技术,用于估计跟踪系统的空间分辨率,以重建扫描连杆的全场偏转轮廓。如果在没有任何专用定位系统的情况下进行测试,则强调了这种技术的重要性。在加州大学圣地亚哥分校(UC San Diego)的铁路缺陷测试设施(RDTF)和加州圣地亚哥的BNSF车场进行的一系列慢速(步行)测试中,提出的“tie声纳”系统原型用于重建扫描的tie偏转轮廓,并具有真实的列车负载。该系统的进一步发展应包括以更高的速度(例如,收入速度)进行业绩评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-Motion Railroad Tie Deflection Measurement via Ultrasonic Airborne Sonar and Computer Vision Techniques
ABSTRACT It is known in the railroad maintenance engineering community that the deflection of railroad ties is an indicator of the quality of the tie–ballast interface, whose deterioration may cause dangerous train derailments. A new technology is proposed to reconstruct the full-field deflection profile of railroad ties in-motion by means of non-contact ultrasonic testing and computer vision techniques. The sensing layout consists of an array of air-coupled capacitive transducers (operated in pulse-echo sonar-based ranging mode) and a high frame-rate camera, rigidly connected to the main frame of a moving train car. The acquisition system is programmed such that the synchronized waveforms and images are collected and saved as train car moves. In the processing stage, a supervised machine learning-based image classification approach is developed to demarcate the tie boundaries. For this purpose, the Speeded-Up Robust Features (SURF) and Bag of Visual Words (BOVW) algorithms are employed to encode images into condensed feature vectors, which are subsequently fed into the Support Vector Machine (SVM) to train a classifier. The relative deflections of the identified ties are eventually computed by tracking the time-of-flight of the reflected waves from the surfaces flagged as tie. An image processing technique is also developed to estimate the spatial resolution of the tracking system, required to reconstruct the full-field deflection profile of the scanned ties. The importance of such a technique is stressed if the test run is performed without any dedicated positioning system. The proposed ‘tie sonar’ system was prototyped and used to reconstruct the deflection profile of the ties scanned during a series of test runs conducted at slow (walking) speed at the Rail Defect Testing Facility (RDTF) of UC San Diego as well as a BNSF yard in San Diego, CA, with a realistic train load. Further developments of this system should include a performance evaluation at higher speeds (e.g., revenue speed).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in Nondestructive Evaluation
Research in Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
2.30
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement. Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.
期刊最新文献
Comparison of Skin Effects in Ferromagnetic and Nonferromagnetic Metals in Eddy Current Testing Bridging the Gap: Correlating Ultrasonically Quantified BVID with the Compressive Strength of CFRP Composites Nondestructive Evaluation and Residual Property Assessment of Impacted Nylon/carbon-Fiber Additively Manufactured FFF Components Using Four-Point Bend and Ultrasonic Testing A Novel Image-Based Long-Range Continuously Scanning Laser Doppler Vibrometer for Operational Modal Analysis of a Rotating Structure A Methodology for Structural Damage Detection Adding Masses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1