Zixin Mu, Zhenhua Cai, Chunnian Zeng, Zifan Li, Xufeng Liang, F. Yang, Tingyang Chen, S. Dong, Chunming Deng, S. Niu
{"title":"基于点云配准的航空磨削机器人离线编程自动加载标定算法","authors":"Zixin Mu, Zhenhua Cai, Chunnian Zeng, Zifan Li, Xufeng Liang, F. Yang, Tingyang Chen, S. Dong, Chunming Deng, S. Niu","doi":"10.1108/ir-12-2021-0284","DOIUrl":null,"url":null,"abstract":"\nPurpose\nDuring the process of the robotic grinding and polishing operations on aero-engine blades, the key problem of calibration error lies in fixture error and uneven margin. To solve this problem, this paper aims to propose a novel method to achieve rapid online calibration of the workpiece coordinate system through laser-based measurement techniques.\n\n\nDesign/methodology/approach\nThe authors propose a calibration strategy based on point cloud registration algorithm. The main principle is presented as follows: aero blade mounted on clamping end-effector is hold by industry robot, the whole device is then scanned by a 3D laser scanner to obtain its surface point cloud, and a fast segmentation method is used to acquire the point cloud of the workpiece. Combining Super4PCS algorithm with trimmed iterative closest point, we can align the key points of the scanned point cloud and the sampled points of the blade model, thus obtaining the translation and rotation matrix for calculating the workpiece coordinate and machining allowance. The proposed calibration strategy is experimentally validated, and the positioning error, as well as the margin distribution, is finally analyzed.\n\n\nFindings\nThe experimental results show that the algorithm can well accomplish the task of cross-source, partial data and similar local features of blade point cloud registration with high precision. The total time spent on point cloud alignment of 100,000 order of magnitude blade is about 4.2 s, and meanwhile, the average point cloud alignment error is reduced to below 0.05 mm.\n\n\nOriginality/value\nAn improved point cloud registration method is proposed and introduced into the calibration process of a robotic system. The online calibration technique improves the accuracy and efficiency of the calibration process and enhances the automation of the robotic grinding and polishing system.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A point cloud registration-based calibration algorithm for robot offline programming automatic loading in aero-grinding applications\",\"authors\":\"Zixin Mu, Zhenhua Cai, Chunnian Zeng, Zifan Li, Xufeng Liang, F. Yang, Tingyang Chen, S. Dong, Chunming Deng, S. Niu\",\"doi\":\"10.1108/ir-12-2021-0284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nDuring the process of the robotic grinding and polishing operations on aero-engine blades, the key problem of calibration error lies in fixture error and uneven margin. To solve this problem, this paper aims to propose a novel method to achieve rapid online calibration of the workpiece coordinate system through laser-based measurement techniques.\\n\\n\\nDesign/methodology/approach\\nThe authors propose a calibration strategy based on point cloud registration algorithm. The main principle is presented as follows: aero blade mounted on clamping end-effector is hold by industry robot, the whole device is then scanned by a 3D laser scanner to obtain its surface point cloud, and a fast segmentation method is used to acquire the point cloud of the workpiece. Combining Super4PCS algorithm with trimmed iterative closest point, we can align the key points of the scanned point cloud and the sampled points of the blade model, thus obtaining the translation and rotation matrix for calculating the workpiece coordinate and machining allowance. The proposed calibration strategy is experimentally validated, and the positioning error, as well as the margin distribution, is finally analyzed.\\n\\n\\nFindings\\nThe experimental results show that the algorithm can well accomplish the task of cross-source, partial data and similar local features of blade point cloud registration with high precision. The total time spent on point cloud alignment of 100,000 order of magnitude blade is about 4.2 s, and meanwhile, the average point cloud alignment error is reduced to below 0.05 mm.\\n\\n\\nOriginality/value\\nAn improved point cloud registration method is proposed and introduced into the calibration process of a robotic system. The online calibration technique improves the accuracy and efficiency of the calibration process and enhances the automation of the robotic grinding and polishing system.\\n\",\"PeriodicalId\":54987,\"journal\":{\"name\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-12-2021-0284\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-12-2021-0284","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A point cloud registration-based calibration algorithm for robot offline programming automatic loading in aero-grinding applications
Purpose
During the process of the robotic grinding and polishing operations on aero-engine blades, the key problem of calibration error lies in fixture error and uneven margin. To solve this problem, this paper aims to propose a novel method to achieve rapid online calibration of the workpiece coordinate system through laser-based measurement techniques.
Design/methodology/approach
The authors propose a calibration strategy based on point cloud registration algorithm. The main principle is presented as follows: aero blade mounted on clamping end-effector is hold by industry robot, the whole device is then scanned by a 3D laser scanner to obtain its surface point cloud, and a fast segmentation method is used to acquire the point cloud of the workpiece. Combining Super4PCS algorithm with trimmed iterative closest point, we can align the key points of the scanned point cloud and the sampled points of the blade model, thus obtaining the translation and rotation matrix for calculating the workpiece coordinate and machining allowance. The proposed calibration strategy is experimentally validated, and the positioning error, as well as the margin distribution, is finally analyzed.
Findings
The experimental results show that the algorithm can well accomplish the task of cross-source, partial data and similar local features of blade point cloud registration with high precision. The total time spent on point cloud alignment of 100,000 order of magnitude blade is about 4.2 s, and meanwhile, the average point cloud alignment error is reduced to below 0.05 mm.
Originality/value
An improved point cloud registration method is proposed and introduced into the calibration process of a robotic system. The online calibration technique improves the accuracy and efficiency of the calibration process and enhances the automation of the robotic grinding and polishing system.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.