基于CNN-LSTM的转纱质量预测模型

J. Sensors Pub Date : 2022-08-08 DOI:10.1155/2022/3955047
Zhenlong Hu
{"title":"基于CNN-LSTM的转纱质量预测模型","authors":"Zhenlong Hu","doi":"10.1155/2022/3955047","DOIUrl":null,"url":null,"abstract":"In the whole textile industry chain, yarn production is one of the key links, which has a great impact on the quality of textile and clothing products. For a long time, the textile industry has been hoping for a yarn quality prediction technology, which can accurately predict the final yarn quality indicators according to the known conditions such as raw materials and production processes. CNN-LSTM yarn prediction model is a deep neural network model based on the assumption that the influence of textile processing time series on yarn quality is considered. CNN optimizes the input eigenvalues through one-dimensional convolution and pooling, and LSTM matches the optimized fiber performance indexes and process parameters in time series according to the processing sequence and excavates their laws, thus realizing the goal of predicting yarn quality indexes. The effects of input fiber performance index, process parameters, convolution kernel parameters, pool kernel parameters, LSTM unit number, LSTM layer number, and optimization algorithm on prediction accuracy were studied, and the parameters of CNN-LSTM model were determined. Experiments on the data set of spinning yarn show that the mean square error (MSE) of CNN-LSTM model in predicting yarn strength, Dan Qiang unevenness, evenness unevenness, and total neps is lower than that of linear regression model and BP neural network. At the same time, it is found that the prediction accuracy of CNN-LSTM model is greatly influenced by process parameters and optimization algorithm.","PeriodicalId":14776,"journal":{"name":"J. Sensors","volume":"30 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prediction Model of Rotor Yarn Quality Based on CNN-LSTM\",\"authors\":\"Zhenlong Hu\",\"doi\":\"10.1155/2022/3955047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the whole textile industry chain, yarn production is one of the key links, which has a great impact on the quality of textile and clothing products. For a long time, the textile industry has been hoping for a yarn quality prediction technology, which can accurately predict the final yarn quality indicators according to the known conditions such as raw materials and production processes. CNN-LSTM yarn prediction model is a deep neural network model based on the assumption that the influence of textile processing time series on yarn quality is considered. CNN optimizes the input eigenvalues through one-dimensional convolution and pooling, and LSTM matches the optimized fiber performance indexes and process parameters in time series according to the processing sequence and excavates their laws, thus realizing the goal of predicting yarn quality indexes. The effects of input fiber performance index, process parameters, convolution kernel parameters, pool kernel parameters, LSTM unit number, LSTM layer number, and optimization algorithm on prediction accuracy were studied, and the parameters of CNN-LSTM model were determined. Experiments on the data set of spinning yarn show that the mean square error (MSE) of CNN-LSTM model in predicting yarn strength, Dan Qiang unevenness, evenness unevenness, and total neps is lower than that of linear regression model and BP neural network. At the same time, it is found that the prediction accuracy of CNN-LSTM model is greatly influenced by process parameters and optimization algorithm.\",\"PeriodicalId\":14776,\"journal\":{\"name\":\"J. Sensors\",\"volume\":\"30 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/3955047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/3955047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在整个纺织产业链中,纱线生产是关键环节之一,对纺织服装产品的质量影响很大。长期以来,纺织行业一直希望有一种纱线质量预测技术,能够根据已知的原料、生产工艺等条件,准确预测出最终的纱线质量指标。CNN-LSTM纱线预测模型是在考虑纺织加工时间序列对纱线质量影响的假设基础上建立的深度神经网络模型。CNN通过一维卷积和池化对输入特征值进行优化,LSTM根据加工顺序将优化后的纤维性能指标和工艺参数在时间序列上进行匹配,并挖掘其规律,从而实现纱线质量指标预测的目的。研究了输入光纤性能指标、工艺参数、卷积核参数、池核参数、LSTM单元数、LSTM层数和优化算法对预测精度的影响,确定了CNN-LSTM模型的参数。在纺纱数据集上进行的实验表明,CNN-LSTM模型在预测纱线强力、单强不匀、匀条不匀和总纱条数方面的均方误差(MSE)均低于线性回归模型和BP神经网络。同时发现,CNN-LSTM模型的预测精度受工艺参数和优化算法的影响较大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction Model of Rotor Yarn Quality Based on CNN-LSTM
In the whole textile industry chain, yarn production is one of the key links, which has a great impact on the quality of textile and clothing products. For a long time, the textile industry has been hoping for a yarn quality prediction technology, which can accurately predict the final yarn quality indicators according to the known conditions such as raw materials and production processes. CNN-LSTM yarn prediction model is a deep neural network model based on the assumption that the influence of textile processing time series on yarn quality is considered. CNN optimizes the input eigenvalues through one-dimensional convolution and pooling, and LSTM matches the optimized fiber performance indexes and process parameters in time series according to the processing sequence and excavates their laws, thus realizing the goal of predicting yarn quality indexes. The effects of input fiber performance index, process parameters, convolution kernel parameters, pool kernel parameters, LSTM unit number, LSTM layer number, and optimization algorithm on prediction accuracy were studied, and the parameters of CNN-LSTM model were determined. Experiments on the data set of spinning yarn show that the mean square error (MSE) of CNN-LSTM model in predicting yarn strength, Dan Qiang unevenness, evenness unevenness, and total neps is lower than that of linear regression model and BP neural network. At the same time, it is found that the prediction accuracy of CNN-LSTM model is greatly influenced by process parameters and optimization algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Index Construction and Application of School-Enterprise Collaborative Education Platform Based on AHP Fuzzy Method in Double Creation Education Practice Optimization of Intelligent Display Mode of Museum Cultural Relics Based on Intelligent Wireless Sensor Network Feature Extraction Method of Art Visual Communication Image Based on 5G Intelligent Sensor Network Scene Classification Using Deep Networks Combined with Visual Attention Spatial Expression of Multifaceted Soft Decoration Elements: Application of 3D Reconstruction Algorithm in Soft Decoration and Furnishing Design of Office Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1