Arif Jahangir, Kavyan Tirdad, Alex Dela Cruz, Alireza Sadeghian, Michael Cusimano
{"title":"机器学习在预测颅内压高血压信号中的应用:各种算法的比较","authors":"Arif Jahangir, Kavyan Tirdad, Alex Dela Cruz, Alireza Sadeghian, Michael Cusimano","doi":"10.1109/MSMC.2021.3097982","DOIUrl":null,"url":null,"abstract":"The objective of the work presented in this article is to investigate the applicability of lightweight machine learning (ML) algorithms capable of detecting and forecasting hypertensive (HT) episodes from historical intracranial pressure (ICP) signals. Specifically, we aim at identifying noncomputationally dependent algorithms, which can be supported by lightweight hardware such as medical monitoring devices. We also propose applicable algorithms, which can be trained with a limited number of labeled samples due to the unfeasibility of manually labeling large volumes of ICP signals in most instances.","PeriodicalId":43649,"journal":{"name":"IEEE Systems Man and Cybernetics Magazine","volume":"76 1","pages":"29-38"},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Application of Machine Learning to Forecast Hypertension Signals in Intracranial Pressure: A Comparison of Various Algorithms\",\"authors\":\"Arif Jahangir, Kavyan Tirdad, Alex Dela Cruz, Alireza Sadeghian, Michael Cusimano\",\"doi\":\"10.1109/MSMC.2021.3097982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of the work presented in this article is to investigate the applicability of lightweight machine learning (ML) algorithms capable of detecting and forecasting hypertensive (HT) episodes from historical intracranial pressure (ICP) signals. Specifically, we aim at identifying noncomputationally dependent algorithms, which can be supported by lightweight hardware such as medical monitoring devices. We also propose applicable algorithms, which can be trained with a limited number of labeled samples due to the unfeasibility of manually labeling large volumes of ICP signals in most instances.\",\"PeriodicalId\":43649,\"journal\":{\"name\":\"IEEE Systems Man and Cybernetics Magazine\",\"volume\":\"76 1\",\"pages\":\"29-38\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Systems Man and Cybernetics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSMC.2021.3097982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Man and Cybernetics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMC.2021.3097982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
An Application of Machine Learning to Forecast Hypertension Signals in Intracranial Pressure: A Comparison of Various Algorithms
The objective of the work presented in this article is to investigate the applicability of lightweight machine learning (ML) algorithms capable of detecting and forecasting hypertensive (HT) episodes from historical intracranial pressure (ICP) signals. Specifically, we aim at identifying noncomputationally dependent algorithms, which can be supported by lightweight hardware such as medical monitoring devices. We also propose applicable algorithms, which can be trained with a limited number of labeled samples due to the unfeasibility of manually labeling large volumes of ICP signals in most instances.