{"title":"基于深度强化学习的汽车制造过程实时决策","authors":"Timo P. Gros, Joschka Groß, V. Wolf","doi":"10.1109/WSC48552.2020.9383884","DOIUrl":null,"url":null,"abstract":"Computer simulations of manufacturing processes are in widespread use for optimizing production planning and order processing. If unforeseeable events are common, real-time decisions are necessary to maximize the performance of the manufacturing process. Pre-trained AI-based decision support offers promising opportunities for such time-critical production processes. Here, we explore the effectiveness of deep reinforcement learning for real-time decision making in a car manufacturing process. We combine a simulation model of a central production part, the line buffer, with deep reinforcement learning algorithms, in particular with deep Q-Learning and Monte Carlo tree search. We simulate two different versions of the buffer, a single-agent and a multi-agent one, to generate large amounts of data and train neural networks to represent near-optimal strategies. Our results show that deep reinforcement learning performs extremely well and the resulting strategies provide near-optimal decisions in real-time, while alternative approaches are either slow or give strategies of poor quality.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"38 1","pages":"3032-3044"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Decision Making for a Car Manufacturing Process Using Deep Reinforcement Learning\",\"authors\":\"Timo P. Gros, Joschka Groß, V. Wolf\",\"doi\":\"10.1109/WSC48552.2020.9383884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer simulations of manufacturing processes are in widespread use for optimizing production planning and order processing. If unforeseeable events are common, real-time decisions are necessary to maximize the performance of the manufacturing process. Pre-trained AI-based decision support offers promising opportunities for such time-critical production processes. Here, we explore the effectiveness of deep reinforcement learning for real-time decision making in a car manufacturing process. We combine a simulation model of a central production part, the line buffer, with deep reinforcement learning algorithms, in particular with deep Q-Learning and Monte Carlo tree search. We simulate two different versions of the buffer, a single-agent and a multi-agent one, to generate large amounts of data and train neural networks to represent near-optimal strategies. Our results show that deep reinforcement learning performs extremely well and the resulting strategies provide near-optimal decisions in real-time, while alternative approaches are either slow or give strategies of poor quality.\",\"PeriodicalId\":6692,\"journal\":{\"name\":\"2020 Winter Simulation Conference (WSC)\",\"volume\":\"38 1\",\"pages\":\"3032-3044\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC48552.2020.9383884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9383884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Decision Making for a Car Manufacturing Process Using Deep Reinforcement Learning
Computer simulations of manufacturing processes are in widespread use for optimizing production planning and order processing. If unforeseeable events are common, real-time decisions are necessary to maximize the performance of the manufacturing process. Pre-trained AI-based decision support offers promising opportunities for such time-critical production processes. Here, we explore the effectiveness of deep reinforcement learning for real-time decision making in a car manufacturing process. We combine a simulation model of a central production part, the line buffer, with deep reinforcement learning algorithms, in particular with deep Q-Learning and Monte Carlo tree search. We simulate two different versions of the buffer, a single-agent and a multi-agent one, to generate large amounts of data and train neural networks to represent near-optimal strategies. Our results show that deep reinforcement learning performs extremely well and the resulting strategies provide near-optimal decisions in real-time, while alternative approaches are either slow or give strategies of poor quality.