媒体和信息保护和认证的硬件方法

A. Sengupta, S. Mohanty
{"title":"媒体和信息保护和认证的硬件方法","authors":"A. Sengupta, S. Mohanty","doi":"10.1049/PBCS060E_CH11","DOIUrl":null,"url":null,"abstract":"Technology scaling has allowed us to design high-performance devices with a lowpower consumption. The advent of IoT has increased the versatility of data collection and there are many different ways of collecting and transferring data over the Internet. The data that is being collected is also in different forms, that is, text, images, videos, and audios. When they are shared, for a legit use, attackers can break the security and use them for illegible purposes or claim ownership to sell them commercially. This has been the trend lately where many counterfeit products are appearing in the market. This section discusses the digital watermarking, different schemes of digital watermarking, and how a media object can be secured using a watermark. They are also not completely resistant to attacks and measures need to be taken to secure the content that is being watermarked. The chapter also presents different issues with the watermark implementations, attacks and countermeasures to those attacks on watermarking. Section 11.1 presents a broad overview of the IP protection. Section 11.2 discusses the generic overview and components of any watermark system. Section 11.3 summarizes various types of watermarks. Section 11.4 discusses various applications of watermarking. Section 11.5 presents desired characteristics of watermarks. Sections 11.6 discusses the technical challenges of the watermarking. Section 11.7 discusses hardware-based watermarking systems available in the current literature. Section 11.8 discusses about watermarking in smart vehicles. Section 11.9 discusses about medical signal authentication. Section 11.10 highlights side-channel information leakage and its countermeasures. Section 11.11 outlines various forms of attacks on watermarks and watermarking systems. Section 11.12 presents the difficulties involved in making use of them in practice.","PeriodicalId":14528,"journal":{"name":"IP Core Protection and Hardware-Assisted Security for Consumer Electronics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware approaches for media and information protection and authentication\",\"authors\":\"A. Sengupta, S. Mohanty\",\"doi\":\"10.1049/PBCS060E_CH11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology scaling has allowed us to design high-performance devices with a lowpower consumption. The advent of IoT has increased the versatility of data collection and there are many different ways of collecting and transferring data over the Internet. The data that is being collected is also in different forms, that is, text, images, videos, and audios. When they are shared, for a legit use, attackers can break the security and use them for illegible purposes or claim ownership to sell them commercially. This has been the trend lately where many counterfeit products are appearing in the market. This section discusses the digital watermarking, different schemes of digital watermarking, and how a media object can be secured using a watermark. They are also not completely resistant to attacks and measures need to be taken to secure the content that is being watermarked. The chapter also presents different issues with the watermark implementations, attacks and countermeasures to those attacks on watermarking. Section 11.1 presents a broad overview of the IP protection. Section 11.2 discusses the generic overview and components of any watermark system. Section 11.3 summarizes various types of watermarks. Section 11.4 discusses various applications of watermarking. Section 11.5 presents desired characteristics of watermarks. Sections 11.6 discusses the technical challenges of the watermarking. Section 11.7 discusses hardware-based watermarking systems available in the current literature. Section 11.8 discusses about watermarking in smart vehicles. Section 11.9 discusses about medical signal authentication. Section 11.10 highlights side-channel information leakage and its countermeasures. Section 11.11 outlines various forms of attacks on watermarks and watermarking systems. Section 11.12 presents the difficulties involved in making use of them in practice.\",\"PeriodicalId\":14528,\"journal\":{\"name\":\"IP Core Protection and Hardware-Assisted Security for Consumer Electronics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IP Core Protection and Hardware-Assisted Security for Consumer Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/PBCS060E_CH11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IP Core Protection and Hardware-Assisted Security for Consumer Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/PBCS060E_CH11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

技术扩展使我们能够以低功耗设计高性能设备。物联网的出现增加了数据收集的多功能性,并且有许多不同的方式通过互联网收集和传输数据。正在收集的数据也有不同的形式,有文本、图像、视频和音频。当它们被共享用于合法用途时,攻击者可以破坏安全性并将它们用于难以辨认的目的或声称所有权以进行商业销售。这是最近的趋势,许多假冒产品出现在市场上。本节讨论数字水印,不同的数字水印方案,以及如何使用水印保护媒体对象。它们也不能完全抵抗攻击,需要采取措施来保护被加水印的内容。本章还介绍了水印的实现、攻击以及对这些攻击的应对措施。第11.1节概述了知识产权保护。第11.2节讨论了任何水印系统的一般概述和组件。第11.3节总结了各种类型的水印。第11.4节讨论了水印的各种应用。第11.5节给出了期望的水印特性。第11.6节讨论了水印的技术挑战。第11.7节讨论了当前文献中可用的基于硬件的水印系统。第11.8节讨论了智能车辆中的水印。第11.9节讨论医疗信号认证。第11.10节重点介绍了侧信道信息泄漏及其对策。第11.11节概述了对水印和水印系统的各种形式的攻击。第11.12节介绍了在实践中使用它们所涉及的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware approaches for media and information protection and authentication
Technology scaling has allowed us to design high-performance devices with a lowpower consumption. The advent of IoT has increased the versatility of data collection and there are many different ways of collecting and transferring data over the Internet. The data that is being collected is also in different forms, that is, text, images, videos, and audios. When they are shared, for a legit use, attackers can break the security and use them for illegible purposes or claim ownership to sell them commercially. This has been the trend lately where many counterfeit products are appearing in the market. This section discusses the digital watermarking, different schemes of digital watermarking, and how a media object can be secured using a watermark. They are also not completely resistant to attacks and measures need to be taken to secure the content that is being watermarked. The chapter also presents different issues with the watermark implementations, attacks and countermeasures to those attacks on watermarking. Section 11.1 presents a broad overview of the IP protection. Section 11.2 discusses the generic overview and components of any watermark system. Section 11.3 summarizes various types of watermarks. Section 11.4 discusses various applications of watermarking. Section 11.5 presents desired characteristics of watermarks. Sections 11.6 discusses the technical challenges of the watermarking. Section 11.7 discusses hardware-based watermarking systems available in the current literature. Section 11.8 discusses about watermarking in smart vehicles. Section 11.9 discusses about medical signal authentication. Section 11.10 highlights side-channel information leakage and its countermeasures. Section 11.11 outlines various forms of attacks on watermarks and watermarking systems. Section 11.12 presents the difficulties involved in making use of them in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural obfuscation of DSP cores used in CE devices Security in consumer electronics and internet of things (IoT) Computational forensic engineering for resolving ownership conflict of DSP IP core Obfuscation of JPEG CODEC IP core for CE devices Symmetrical protection of DSP IP core and integrated circuits using fingerprinting and watermarking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1