{"title":"用怀疑p $$ p $$值评估可复制性:I型误差控制和样本量计划","authors":"Charlotte Micheloud, F. Balabdaoui, L. Held","doi":"10.1111/stan.12312","DOIUrl":null,"url":null,"abstract":"We study a statistical framework for replicability based on a recently proposed quantitative measure of replication success, the sceptical p$$ p $$ ‐value. A recalibration is proposed to obtain exact overall Type‐I error control if the effect is null in both studies and additional bounds on the partial and conditional Type‐I error rate, which represent the case where only one study has a null effect. The approach avoids the double dichotomization for significance of the two‐trials rule and has larger project power to detect existing effects over both studies in combination. It can also be used for power calculations and requires a smaller replication sample size than the two‐trials rule for already convincing original studies. We illustrate the performance of the proposed methodology in an application to data from the Experimental Economics Replication Project.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Assessing replicability with the sceptical p$$ p $$ ‐value: Type‐I error control and sample size planning\",\"authors\":\"Charlotte Micheloud, F. Balabdaoui, L. Held\",\"doi\":\"10.1111/stan.12312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a statistical framework for replicability based on a recently proposed quantitative measure of replication success, the sceptical p$$ p $$ ‐value. A recalibration is proposed to obtain exact overall Type‐I error control if the effect is null in both studies and additional bounds on the partial and conditional Type‐I error rate, which represent the case where only one study has a null effect. The approach avoids the double dichotomization for significance of the two‐trials rule and has larger project power to detect existing effects over both studies in combination. It can also be used for power calculations and requires a smaller replication sample size than the two‐trials rule for already convincing original studies. We illustrate the performance of the proposed methodology in an application to data from the Experimental Economics Replication Project.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12312\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12312","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
摘要
我们研究了一个统计框架的可复制性基于最近提出的复制成功的定量测量,怀疑p $$ p $$‐值。如果两项研究的影响为零,以及部分和条件型I错误率的附加界限,则建议重新校准以获得精确的总体型I误差控制,这代表了只有一项研究具有零效应的情况。该方法避免了两次试验规则显著性的双重二分法,并且具有更大的项目能力来检测两项研究合并后的现有效应。它也可以用于功率计算,并且需要比已经令人信服的原始研究的两次试验规则更小的复制样本量。我们在实验经济学复制项目的数据应用中说明了所提出方法的性能。
Assessing replicability with the sceptical p$$ p $$ ‐value: Type‐I error control and sample size planning
We study a statistical framework for replicability based on a recently proposed quantitative measure of replication success, the sceptical p$$ p $$ ‐value. A recalibration is proposed to obtain exact overall Type‐I error control if the effect is null in both studies and additional bounds on the partial and conditional Type‐I error rate, which represent the case where only one study has a null effect. The approach avoids the double dichotomization for significance of the two‐trials rule and has larger project power to detect existing effects over both studies in combination. It can also be used for power calculations and requires a smaller replication sample size than the two‐trials rule for already convincing original studies. We illustrate the performance of the proposed methodology in an application to data from the Experimental Economics Replication Project.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.