最大化不相交的球或盘的半径总和

D. Eppstein
{"title":"最大化不相交的球或盘的半径总和","authors":"D. Eppstein","doi":"10.20382/jocg.v8i1a12","DOIUrl":null,"url":null,"abstract":"Finding nonoverlapping balls with given centers in any metric space, maximizing the sum of radii of the balls, can be expressed as a linear program. Its dual linear program expresses the problem of finding a minimum-weight set of cycles (allowing 2-cycles) covering all vertices in a complete geometric graph. For points in a Euclidean space of any finite dimension~$d$, with any convex distance function on this space, this graph can be replaced by a sparse subgraph obeying a separator theorem. This graph structure leads to an algorithm for finding the optimum set of balls in time $O(n^{2-1/d})$, improving the $O(n^3)$ time of a naive cycle cover algorithm. As a subroutine, we provide an algorithm for weighted bipartite matching in graphs with separators, which speeds up the best previous algorithm for this problem on planar bipartite graphs from $O(n^{3/2}\\log n)$ to $O(n^{3/2})$ time. We also show how to constrain the balls to all have radius at least a given threshold value, and how to apply our radius-sum optimization algorithms to the problem of embedding a finite metric space into a star metric minimizing the average distance to the hub.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"89 1","pages":"316-339"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Maximizing the Sum of Radii of Disjoint Balls or Disks\",\"authors\":\"D. Eppstein\",\"doi\":\"10.20382/jocg.v8i1a12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding nonoverlapping balls with given centers in any metric space, maximizing the sum of radii of the balls, can be expressed as a linear program. Its dual linear program expresses the problem of finding a minimum-weight set of cycles (allowing 2-cycles) covering all vertices in a complete geometric graph. For points in a Euclidean space of any finite dimension~$d$, with any convex distance function on this space, this graph can be replaced by a sparse subgraph obeying a separator theorem. This graph structure leads to an algorithm for finding the optimum set of balls in time $O(n^{2-1/d})$, improving the $O(n^3)$ time of a naive cycle cover algorithm. As a subroutine, we provide an algorithm for weighted bipartite matching in graphs with separators, which speeds up the best previous algorithm for this problem on planar bipartite graphs from $O(n^{3/2}\\\\log n)$ to $O(n^{3/2})$ time. We also show how to constrain the balls to all have radius at least a given threshold value, and how to apply our radius-sum optimization algorithms to the problem of embedding a finite metric space into a star metric minimizing the average distance to the hub.\",\"PeriodicalId\":54969,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"89 1\",\"pages\":\"316-339\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20382/jocg.v8i1a12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v8i1a12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

在任意度量空间中寻找具有给定中心的非重叠球,使球的半径和最大化,可以表示为一个线性规划。它的对偶线性规划表达了寻找覆盖完整几何图中所有顶点的最小权值环集(允许2个环)的问题。对于任意有限维欧几里得空间上的点,在该空间上具有任意凸距离函数,该图可以被服从分隔定理的稀疏子图所代替。这种图结构导致了在$O(n^{2-1/d})$时间内找到最优球集的算法,改进了朴素循环覆盖算法的$O(n^3)$时间。作为子程序,我们提供了一种带分隔符的二部图的加权匹配算法,该算法将平面二部图的最佳匹配算法从$O(n^{3/2}\log n)$缩短到$O(n^{3/2})$。我们还展示了如何约束所有球的半径至少具有给定的阈值,以及如何将我们的半径和优化算法应用于将有限度量空间嵌入到最小化到轮毂的平均距离的星形度量的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximizing the Sum of Radii of Disjoint Balls or Disks
Finding nonoverlapping balls with given centers in any metric space, maximizing the sum of radii of the balls, can be expressed as a linear program. Its dual linear program expresses the problem of finding a minimum-weight set of cycles (allowing 2-cycles) covering all vertices in a complete geometric graph. For points in a Euclidean space of any finite dimension~$d$, with any convex distance function on this space, this graph can be replaced by a sparse subgraph obeying a separator theorem. This graph structure leads to an algorithm for finding the optimum set of balls in time $O(n^{2-1/d})$, improving the $O(n^3)$ time of a naive cycle cover algorithm. As a subroutine, we provide an algorithm for weighted bipartite matching in graphs with separators, which speeds up the best previous algorithm for this problem on planar bipartite graphs from $O(n^{3/2}\log n)$ to $O(n^{3/2})$ time. We also show how to constrain the balls to all have radius at least a given threshold value, and how to apply our radius-sum optimization algorithms to the problem of embedding a finite metric space into a star metric minimizing the average distance to the hub.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
期刊最新文献
On morphs of 1-plane graphs A Geometric Approach to Inelastic Collapse Near-optimal algorithms for point-line fitting problems Algorithms for approximate sparse regression and nearest induced hulls Recognizing weighted and seeded disk graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1