Blob损失:语义分割的实例不平衡感知损失函数

F. Kofler, Suprosanna Shit, I. Ezhov, L. Fidon, Rami Al-Maskari, Hongwei Li, H. Bhatia, T. Loehr, M. Piraud, Ali Erturk, J. Kirschke, J. Peeken, Tom Kamiel Magda Vercauteren, C. Zimmer, B. Wiestler, Bjoern H Menze
{"title":"Blob损失:语义分割的实例不平衡感知损失函数","authors":"F. Kofler, Suprosanna Shit, I. Ezhov, L. Fidon, Rami Al-Maskari, Hongwei Li, H. Bhatia, T. Loehr, M. Piraud, Ali Erturk, J. Kirschke, J. Peeken, Tom Kamiel Magda Vercauteren, C. Zimmer, B. Wiestler, Bjoern H Menze","doi":"10.48550/arXiv.2205.08209","DOIUrl":null,"url":null,"abstract":"Deep convolutional neural networks (CNN) have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Dice coefficient (DSC). By design, DSC can tackle class imbalance, however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory DSC. Nevertheless, detecting tiny instances is crucial for many applications, such as disease monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, \\emph{blob loss}, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. \\emph{Blob loss} is designed for semantic segmentation problems where detecting multiple instances matters. We extensively evaluate a DSC-based \\emph{blob loss} in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5% improvement for MS lesions, 3% improvement for liver tumor, and an average 2% improvement for microscopy segmentation tasks considering F1 score.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"85 1","pages":"755-767"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Blob Loss: Instance Imbalance Aware Loss Functions for Semantic Segmentation\",\"authors\":\"F. Kofler, Suprosanna Shit, I. Ezhov, L. Fidon, Rami Al-Maskari, Hongwei Li, H. Bhatia, T. Loehr, M. Piraud, Ali Erturk, J. Kirschke, J. Peeken, Tom Kamiel Magda Vercauteren, C. Zimmer, B. Wiestler, Bjoern H Menze\",\"doi\":\"10.48550/arXiv.2205.08209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep convolutional neural networks (CNN) have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Dice coefficient (DSC). By design, DSC can tackle class imbalance, however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory DSC. Nevertheless, detecting tiny instances is crucial for many applications, such as disease monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, \\\\emph{blob loss}, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. \\\\emph{Blob loss} is designed for semantic segmentation problems where detecting multiple instances matters. We extensively evaluate a DSC-based \\\\emph{blob loss} in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5% improvement for MS lesions, 3% improvement for liver tumor, and an average 2% improvement for microscopy segmentation tasks considering F1 score.\",\"PeriodicalId\":73379,\"journal\":{\"name\":\"Information processing in medical imaging : proceedings of the ... conference\",\"volume\":\"85 1\",\"pages\":\"755-767\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information processing in medical imaging : proceedings of the ... conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.08209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information processing in medical imaging : proceedings of the ... conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.08209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

深度卷积神经网络(CNN)在语义分割任务中已经被证明是非常有效的。最流行的损失函数是针对改进的体积分数,如Dice系数(DSC)。通过设计,DSC可以处理类的不平衡,但是,它不能识别类中的实例不平衡。因此,大型前台实例可以支配较小的实例,并且仍然产生令人满意的DSC。然而,检测微小实例对于许多应用程序(如疾病监测)至关重要。例如,在多发性硬化症患者的随访中,定位和监测小范围病变是必不可少的。我们提出了一种新的损失函数,\emph{blob损失},主要目的是最大化实例级检测指标,如F1分数和灵敏度。\emph{Blob损失}是为语义分割问题而设计的,其中检测多个实例很重要。我们在五个复杂的3D语义分割任务中广泛评估了基于dsc的\emph{blob损失},这些任务在纹理和形态方面具有明显的实例异质性。与软骰子损失相比,我们达到了5% improvement for MS lesions, 3% improvement for liver tumor, and an average 2% improvement for microscopy segmentation tasks considering F1 score.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blob Loss: Instance Imbalance Aware Loss Functions for Semantic Segmentation
Deep convolutional neural networks (CNN) have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Dice coefficient (DSC). By design, DSC can tackle class imbalance, however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory DSC. Nevertheless, detecting tiny instances is crucial for many applications, such as disease monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, \emph{blob loss}, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. \emph{Blob loss} is designed for semantic segmentation problems where detecting multiple instances matters. We extensively evaluate a DSC-based \emph{blob loss} in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5% improvement for MS lesions, 3% improvement for liver tumor, and an average 2% improvement for microscopy segmentation tasks considering F1 score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vicinal Feature Statistics Augmentation for Federated 3D Medical Volume Segmentation Better Generalization of White Matter Tract Segmentation to Arbitrary Datasets with Scaled Residual Bootstrap Unsupervised Adaptation of Polyp Segmentation Models via Coarse-to-Fine Self-Supervision Weakly Semi-supervised Detection in Lung Ultrasound Videos Bootstrapping Semi-supervised Medical Image Segmentation with Anatomical-Aware Contrastive Distillation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1