乙烯基聚合物对聚合物改性砂浆性能的影响

R. Arcozzi, G. Ferrari, L. Gini, G. Pistolesi
{"title":"乙烯基聚合物对聚合物改性砂浆性能的影响","authors":"R. Arcozzi, G. Ferrari, L. Gini, G. Pistolesi","doi":"10.14359/6183","DOIUrl":null,"url":null,"abstract":"Seven different polymer latexes, characterized by different resistance to alkaline hydrolysis, were used to produce polymer-modified cement mortars. The following polymers were tested: styrene-butadiene copolymer, vinyl acetate-vinyl versatate copolymer, vinyl acetate-vinyl versatates terpolymer, vinyl acetate-ethylene copolymer, vinyl acetate-vinyl propionate copolymer, vinyl acetate-dibutyl maleate copolymer and vinyl acetate homopolymer. Measurements of compressive strength, dynamic modulus of elasticity, water absorption and bond-strength to a concrete substrate were carried out on the polymer-modified mortars in comparison to a reference mixture without polymers. Infrared and XRD analytical techniques were used to investigate the alkaline hydrolysis of the polymers and cement hydration, respectively. The results indicate that polymers with higher resistance to hydrolysis performed better in terms of higher bond strength to the concrete substrate and lower water absorption of the corresponding mortars.","PeriodicalId":21898,"journal":{"name":"SP-173: Fifth CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1997-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Vinyl Polymers on the Characteristics of Polymer-Modified Mortars\",\"authors\":\"R. Arcozzi, G. Ferrari, L. Gini, G. Pistolesi\",\"doi\":\"10.14359/6183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seven different polymer latexes, characterized by different resistance to alkaline hydrolysis, were used to produce polymer-modified cement mortars. The following polymers were tested: styrene-butadiene copolymer, vinyl acetate-vinyl versatate copolymer, vinyl acetate-vinyl versatates terpolymer, vinyl acetate-ethylene copolymer, vinyl acetate-vinyl propionate copolymer, vinyl acetate-dibutyl maleate copolymer and vinyl acetate homopolymer. Measurements of compressive strength, dynamic modulus of elasticity, water absorption and bond-strength to a concrete substrate were carried out on the polymer-modified mortars in comparison to a reference mixture without polymers. Infrared and XRD analytical techniques were used to investigate the alkaline hydrolysis of the polymers and cement hydration, respectively. The results indicate that polymers with higher resistance to hydrolysis performed better in terms of higher bond strength to the concrete substrate and lower water absorption of the corresponding mortars.\",\"PeriodicalId\":21898,\"journal\":{\"name\":\"SP-173: Fifth CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-173: Fifth CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/6183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-173: Fifth CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/6183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用7种抗碱性水解性能不同的聚合物乳胶制备聚合物改性水泥砂浆。测试了以下聚合物:苯乙烯-丁二烯共聚物、醋酸乙烯-泛酸乙烯共聚物、醋酸乙烯-泛酸乙烯共聚物、醋酸乙烯-乙烯-乙烯共聚物、醋酸乙烯-丙酸乙烯共聚物、醋酸乙烯-马来酸二丁酯共聚物和醋酸乙烯均聚物。对聚合物改性砂浆进行了抗压强度、动态弹性模量、吸水率和与混凝土基体的粘结强度的测量,并与不含聚合物的参考混合物进行了比较。采用红外和XRD分析技术分别对聚合物的碱水解和水泥水化进行了研究。结果表明,抗水解性能越好的聚合物与混凝土基体的粘结强度越高,砂浆的吸水率越低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Influence of Vinyl Polymers on the Characteristics of Polymer-Modified Mortars
Seven different polymer latexes, characterized by different resistance to alkaline hydrolysis, were used to produce polymer-modified cement mortars. The following polymers were tested: styrene-butadiene copolymer, vinyl acetate-vinyl versatate copolymer, vinyl acetate-vinyl versatates terpolymer, vinyl acetate-ethylene copolymer, vinyl acetate-vinyl propionate copolymer, vinyl acetate-dibutyl maleate copolymer and vinyl acetate homopolymer. Measurements of compressive strength, dynamic modulus of elasticity, water absorption and bond-strength to a concrete substrate were carried out on the polymer-modified mortars in comparison to a reference mixture without polymers. Infrared and XRD analytical techniques were used to investigate the alkaline hydrolysis of the polymers and cement hydration, respectively. The results indicate that polymers with higher resistance to hydrolysis performed better in terms of higher bond strength to the concrete substrate and lower water absorption of the corresponding mortars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Concrete Pumping: A New World Record The Influence of Chemical Admixtures on Restrained Drying Shrinkage of Concrete Mechanical Properties of Modified Reactive Powder Concrete Dispersion Mechanisms of Alite Stabilized by Superplasticizers Containing Polyethylene Oxide Graft Chains Properties of Polymer-Cement Coatings for Concrete Protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1