M. Hasegawa, Hiroki Sato, Katsuhisa Hoshino, Yasuhisa Arao, J. Ishii
{"title":"由八氢-2,3,6,7-蒽四羧酸二酐衍生的无色聚酰亚胺","authors":"M. Hasegawa, Hiroki Sato, Katsuhisa Hoshino, Yasuhisa Arao, J. Ishii","doi":"10.3390/macromol3020011","DOIUrl":null,"url":null,"abstract":"A cycloaliphatic tetracarboxylic dianhydride, octahydro-2,3,6,7-anthracenetetracarboxylic dianhydride (OHADA) was synthesized to obtain novel colorless polyimides (PIs). Herein, approaches for decolorizing an OHADA prototype and simplifying the entire process are described, and a plausible steric structure for OHADA is proposed. The polyaddition of OHADA and 2,2′-bis(trifluoromethyl)benzidine (TFMB) was unsuccessful; specifically, the reaction mixture remained inhomogeneous even after prolonged stirring. However, the modified one-pot process was applicable to the OHADA/TFMB system. The isolated PI powder form, as well as those for the other OHADA-based PIs, was highly soluble in numerous solvents and afforded a homogeneous and stable solution with a high solid content (20–30 wt%). Solution casting produced a colorless and ductile PI film with a very high glass transition temperature (Tg~300 °C). Furthermore, the OHADA/TFMB system exhibited remarkable thermal stability compared with those of the other related TFMB-derived semi-cycloaliphatic PIs. However, contrary to our expectations, this PI film did not exhibit a low linear coefficient of thermal expansion (CTE). This PI film also possessed excellent thermoplasticity, probably reflecting its peculiar steric structure. The use of an amide-containing diamine significantly enhanced the Tg (355 °C) and somewhat reduced the CTE (41.5 ppm K−1) while maintaining high optical transparency and excellent solubility.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Colorless Polyimides Derived from Octahydro-2,3,6,7-anthracenetetracarboxylic Dianhydride\",\"authors\":\"M. Hasegawa, Hiroki Sato, Katsuhisa Hoshino, Yasuhisa Arao, J. Ishii\",\"doi\":\"10.3390/macromol3020011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cycloaliphatic tetracarboxylic dianhydride, octahydro-2,3,6,7-anthracenetetracarboxylic dianhydride (OHADA) was synthesized to obtain novel colorless polyimides (PIs). Herein, approaches for decolorizing an OHADA prototype and simplifying the entire process are described, and a plausible steric structure for OHADA is proposed. The polyaddition of OHADA and 2,2′-bis(trifluoromethyl)benzidine (TFMB) was unsuccessful; specifically, the reaction mixture remained inhomogeneous even after prolonged stirring. However, the modified one-pot process was applicable to the OHADA/TFMB system. The isolated PI powder form, as well as those for the other OHADA-based PIs, was highly soluble in numerous solvents and afforded a homogeneous and stable solution with a high solid content (20–30 wt%). Solution casting produced a colorless and ductile PI film with a very high glass transition temperature (Tg~300 °C). Furthermore, the OHADA/TFMB system exhibited remarkable thermal stability compared with those of the other related TFMB-derived semi-cycloaliphatic PIs. However, contrary to our expectations, this PI film did not exhibit a low linear coefficient of thermal expansion (CTE). This PI film also possessed excellent thermoplasticity, probably reflecting its peculiar steric structure. The use of an amide-containing diamine significantly enhanced the Tg (355 °C) and somewhat reduced the CTE (41.5 ppm K−1) while maintaining high optical transparency and excellent solubility.\",\"PeriodicalId\":18139,\"journal\":{\"name\":\"Macromol\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromol\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/macromol3020011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/macromol3020011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Colorless Polyimides Derived from Octahydro-2,3,6,7-anthracenetetracarboxylic Dianhydride
A cycloaliphatic tetracarboxylic dianhydride, octahydro-2,3,6,7-anthracenetetracarboxylic dianhydride (OHADA) was synthesized to obtain novel colorless polyimides (PIs). Herein, approaches for decolorizing an OHADA prototype and simplifying the entire process are described, and a plausible steric structure for OHADA is proposed. The polyaddition of OHADA and 2,2′-bis(trifluoromethyl)benzidine (TFMB) was unsuccessful; specifically, the reaction mixture remained inhomogeneous even after prolonged stirring. However, the modified one-pot process was applicable to the OHADA/TFMB system. The isolated PI powder form, as well as those for the other OHADA-based PIs, was highly soluble in numerous solvents and afforded a homogeneous and stable solution with a high solid content (20–30 wt%). Solution casting produced a colorless and ductile PI film with a very high glass transition temperature (Tg~300 °C). Furthermore, the OHADA/TFMB system exhibited remarkable thermal stability compared with those of the other related TFMB-derived semi-cycloaliphatic PIs. However, contrary to our expectations, this PI film did not exhibit a low linear coefficient of thermal expansion (CTE). This PI film also possessed excellent thermoplasticity, probably reflecting its peculiar steric structure. The use of an amide-containing diamine significantly enhanced the Tg (355 °C) and somewhat reduced the CTE (41.5 ppm K−1) while maintaining high optical transparency and excellent solubility.