分布式流处理的弹性脉冲星函数

G. Russo, Antonio Schiazza, V. Cardellini
{"title":"分布式流处理的弹性脉冲星函数","authors":"G. Russo, Antonio Schiazza, V. Cardellini","doi":"10.1145/3447545.3451901","DOIUrl":null,"url":null,"abstract":"An increasing number of data-driven applications rely on the ability of processing data flows in a timely manner, exploiting for this purpose Data Stream Processing~(DSP) systems. Elasticity is an essential feature for DSP systems, as workload variability calls for automatic scaling of the application processing capacity, to avoid both overload and resource wastage. In this work, we implement auto-scaling in Pulsar Functions, a function-based streaming framework built on top of Apache Pulsar. The latter is is a distributed publish-subscribe messaging platform that natively supports serverless functions. Considering various state-of-the-art policies, we show that the proposed solution is able to scale application parallelism with minimal overhead.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Elastic Pulsar Functions for Distributed Stream Processing\",\"authors\":\"G. Russo, Antonio Schiazza, V. Cardellini\",\"doi\":\"10.1145/3447545.3451901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increasing number of data-driven applications rely on the ability of processing data flows in a timely manner, exploiting for this purpose Data Stream Processing~(DSP) systems. Elasticity is an essential feature for DSP systems, as workload variability calls for automatic scaling of the application processing capacity, to avoid both overload and resource wastage. In this work, we implement auto-scaling in Pulsar Functions, a function-based streaming framework built on top of Apache Pulsar. The latter is is a distributed publish-subscribe messaging platform that natively supports serverless functions. Considering various state-of-the-art policies, we show that the proposed solution is able to scale application parallelism with minimal overhead.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447545.3451901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447545.3451901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

越来越多的数据驱动应用依赖于及时处理数据流的能力,为此开发了数据流处理(DSP)系统。弹性是DSP系统的基本特征,因为工作负载的可变性要求自动扩展应用程序处理能力,以避免过载和资源浪费。在这项工作中,我们在脉冲星函数中实现了自动缩放,这是一个基于Apache脉冲星的基于函数的流框架。后者是一种分布式发布-订阅消息传递平台,本机支持无服务器功能。考虑到各种最先进的策略,我们证明了所建议的解决方案能够以最小的开销扩展应用程序并行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elastic Pulsar Functions for Distributed Stream Processing
An increasing number of data-driven applications rely on the ability of processing data flows in a timely manner, exploiting for this purpose Data Stream Processing~(DSP) systems. Elasticity is an essential feature for DSP systems, as workload variability calls for automatic scaling of the application processing capacity, to avoid both overload and resource wastage. In this work, we implement auto-scaling in Pulsar Functions, a function-based streaming framework built on top of Apache Pulsar. The latter is is a distributed publish-subscribe messaging platform that natively supports serverless functions. Considering various state-of-the-art policies, we show that the proposed solution is able to scale application parallelism with minimal overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sampling-based Label Propagation for Balanced Graph Partitioning ICPE '22: ACM/SPEC International Conference on Performance Engineering, Bejing, China, April 9 - 13, 2022 The Role of Analytical Models in the Engineering and Science of Computer Systems Enhancing Observability of Serverless Computing with the Serverless Application Analytics Framework Towards Elastic and Sustainable Data Stream Processing on Edge Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1