Álvaro Farias Pinheiro, Denis Silva da Silveira, Fernando Lima Neto
{"title":"机器学习在主动公共债务催收中的应用,并推荐通过抗议催收的方法","authors":"Álvaro Farias Pinheiro, Denis Silva da Silveira, Fernando Lima Neto","doi":"10.5121/csit.2022.120909","DOIUrl":null,"url":null,"abstract":"This work consists of applying supervised Machine Learning techniques to identify which types of active debts are appropriate for the collection method called protest, one of the means of collection used by the Attorney General of the State of Pernambuco. For research, the following techniques were applied, Neural Network (NN), Logistic Regression (LR), and Support Vector Machine (SVM). The NN model obtained more satisfactory results among the other classification techniques, achieving better values in the following metrics: Accuracy (AC), FMeasure (F1), Precision (PR), and Recall (RC) with indexes above 97% in the evaluation with these metrics. The results showed that the construction of an Artificial Intelligence/Machine Learning model to choose which debts can succeed in the collection process via protest could bring benefits to the government of Pernambuco increasing its efficiency and effectiveness.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of Machine Learning for Active Public Debt Collection with Recommendation for the Method of Collection Via Protest\",\"authors\":\"Álvaro Farias Pinheiro, Denis Silva da Silveira, Fernando Lima Neto\",\"doi\":\"10.5121/csit.2022.120909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work consists of applying supervised Machine Learning techniques to identify which types of active debts are appropriate for the collection method called protest, one of the means of collection used by the Attorney General of the State of Pernambuco. For research, the following techniques were applied, Neural Network (NN), Logistic Regression (LR), and Support Vector Machine (SVM). The NN model obtained more satisfactory results among the other classification techniques, achieving better values in the following metrics: Accuracy (AC), FMeasure (F1), Precision (PR), and Recall (RC) with indexes above 97% in the evaluation with these metrics. The results showed that the construction of an Artificial Intelligence/Machine Learning model to choose which debts can succeed in the collection process via protest could bring benefits to the government of Pernambuco increasing its efficiency and effectiveness.\",\"PeriodicalId\":91205,\"journal\":{\"name\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.120909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.120909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of Machine Learning for Active Public Debt Collection with Recommendation for the Method of Collection Via Protest
This work consists of applying supervised Machine Learning techniques to identify which types of active debts are appropriate for the collection method called protest, one of the means of collection used by the Attorney General of the State of Pernambuco. For research, the following techniques were applied, Neural Network (NN), Logistic Regression (LR), and Support Vector Machine (SVM). The NN model obtained more satisfactory results among the other classification techniques, achieving better values in the following metrics: Accuracy (AC), FMeasure (F1), Precision (PR), and Recall (RC) with indexes above 97% in the evaluation with these metrics. The results showed that the construction of an Artificial Intelligence/Machine Learning model to choose which debts can succeed in the collection process via protest could bring benefits to the government of Pernambuco increasing its efficiency and effectiveness.