社交媒体中模糊静态图像的交互式三维重建方法

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Systems Pub Date : 2022-01-01 DOI:10.1515/jisys-2022-0049
Xiaomei Niu
{"title":"社交媒体中模糊静态图像的交互式三维重建方法","authors":"Xiaomei Niu","doi":"10.1515/jisys-2022-0049","DOIUrl":null,"url":null,"abstract":"Abstract Because the traditional social media fuzzy static image interactive three-dimensional (3D) reconstruction method has the problem of poor reconstruction completeness and long reconstruction time, the social media fuzzy static image interactive 3D reconstruction method is proposed. For preprocessing the fuzzy static image of social media, the Harris corner detection method is used to extract the feature points of the preprocessed fuzzy static image of social media. According to the extraction results, the parameter estimation algorithm of contrast divergence is used to learn the restricted Boltzmann machine (RBM) network model, and the RBM network model is divided into input, output, and hidden layers. By combining the RBM-based joint dictionary learning method and a sparse representation model, an interactive 3D reconstruction of fuzzy static images in social media is achieved. Experimental results based on the CAD software show that the proposed method has a reconstruction completeness of above 95% and the reconstruction time is less than 15 s, improving the completeness and efficiency of the reconstruction, effectively reconstructing the fuzzy static images in social media, and increasing the sense of reality of social media images.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"94 1","pages":"806 - 816"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interactive 3D reconstruction method of fuzzy static images in social media\",\"authors\":\"Xiaomei Niu\",\"doi\":\"10.1515/jisys-2022-0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Because the traditional social media fuzzy static image interactive three-dimensional (3D) reconstruction method has the problem of poor reconstruction completeness and long reconstruction time, the social media fuzzy static image interactive 3D reconstruction method is proposed. For preprocessing the fuzzy static image of social media, the Harris corner detection method is used to extract the feature points of the preprocessed fuzzy static image of social media. According to the extraction results, the parameter estimation algorithm of contrast divergence is used to learn the restricted Boltzmann machine (RBM) network model, and the RBM network model is divided into input, output, and hidden layers. By combining the RBM-based joint dictionary learning method and a sparse representation model, an interactive 3D reconstruction of fuzzy static images in social media is achieved. Experimental results based on the CAD software show that the proposed method has a reconstruction completeness of above 95% and the reconstruction time is less than 15 s, improving the completeness and efficiency of the reconstruction, effectively reconstructing the fuzzy static images in social media, and increasing the sense of reality of social media images.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"94 1\",\"pages\":\"806 - 816\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2022-0049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

摘要针对传统社交媒体模糊静态图像交互式三维(3D)重建方法存在重建完整性差、重建时间长等问题,提出了社交媒体模糊静态图像交互式三维重建方法。对社交媒体模糊静态图像进行预处理,采用Harris角点检测方法提取预处理后的社交媒体模糊静态图像的特征点。根据提取结果,利用对比散度参数估计算法学习受限玻尔兹曼机(RBM)网络模型,并将RBM网络模型划分为输入层、输出层和隐藏层。将基于rbm的联合字典学习方法与稀疏表示模型相结合,实现了社交媒体中模糊静态图像的交互式三维重建。基于CAD软件的实验结果表明,所提方法的重建完整性在95%以上,重建时间小于15 s,提高了重建的完整性和效率,有效地重建了社交媒体中的模糊静态图像,增加了社交媒体图像的真实感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interactive 3D reconstruction method of fuzzy static images in social media
Abstract Because the traditional social media fuzzy static image interactive three-dimensional (3D) reconstruction method has the problem of poor reconstruction completeness and long reconstruction time, the social media fuzzy static image interactive 3D reconstruction method is proposed. For preprocessing the fuzzy static image of social media, the Harris corner detection method is used to extract the feature points of the preprocessed fuzzy static image of social media. According to the extraction results, the parameter estimation algorithm of contrast divergence is used to learn the restricted Boltzmann machine (RBM) network model, and the RBM network model is divided into input, output, and hidden layers. By combining the RBM-based joint dictionary learning method and a sparse representation model, an interactive 3D reconstruction of fuzzy static images in social media is achieved. Experimental results based on the CAD software show that the proposed method has a reconstruction completeness of above 95% and the reconstruction time is less than 15 s, improving the completeness and efficiency of the reconstruction, effectively reconstructing the fuzzy static images in social media, and increasing the sense of reality of social media images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
期刊最新文献
A study on predicting crime rates through machine learning and data mining using text A multiorder feature tracking and explanation strategy for explainable deep learning Intelligent control system for industrial robots based on multi-source data fusion Reinforcement learning with Gaussian process regression using variational free energy A novel distance vector hop localization method for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1