具有最大自适应效率的神经网络

L. Perlovsky
{"title":"具有最大自适应效率的神经网络","authors":"L. Perlovsky","doi":"10.1109/ICSMC.1989.71280","DOIUrl":null,"url":null,"abstract":"A maximal-likelihood artificial neural system (MLANS) is described which performs the ML classification for problems requiring nonlinear classification boundaries. This neural network has ML neurons, which adaptively estimate the local metric in the classification space. This permits the design of flexible classifier shapes using a no-hidden-layer architecture and provides orders-of-magnitude improvement in learning efficiency. The learning efficiency of this network approaches the Cramer-Rao bounds with a relatively small number of samples. The learning process of MLANS can be unsupervised learning with partial or imperfect supervision. The ML approach allows for optimal fusion of all available information, such as a priori and real-time information, including supervisory (training) information.<<ETX>>","PeriodicalId":72691,"journal":{"name":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","volume":"70 1","pages":"208-209 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural networks with maximal adaptive efficiency\",\"authors\":\"L. Perlovsky\",\"doi\":\"10.1109/ICSMC.1989.71280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A maximal-likelihood artificial neural system (MLANS) is described which performs the ML classification for problems requiring nonlinear classification boundaries. This neural network has ML neurons, which adaptively estimate the local metric in the classification space. This permits the design of flexible classifier shapes using a no-hidden-layer architecture and provides orders-of-magnitude improvement in learning efficiency. The learning efficiency of this network approaches the Cramer-Rao bounds with a relatively small number of samples. The learning process of MLANS can be unsupervised learning with partial or imperfect supervision. The ML approach allows for optimal fusion of all available information, such as a priori and real-time information, including supervisory (training) information.<<ETX>>\",\"PeriodicalId\":72691,\"journal\":{\"name\":\"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics\",\"volume\":\"70 1\",\"pages\":\"208-209 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSMC.1989.71280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMC.1989.71280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种极大似然人工神经系统(MLANS),对需要非线性分类边界的问题进行机器学习分类。该神经网络具有ML神经元,可以自适应估计分类空间中的局部度量。这允许使用无隐藏层架构设计灵活的分类器形状,并在学习效率方面提供数量级的改进。该网络的学习效率在样本数量相对较少的情况下接近Cramer-Rao边界。MLANS的学习过程可以是部分监督或不完全监督的无监督学习。ML方法允许所有可用信息的最佳融合,例如先验信息和实时信息,包括监督(训练)信息
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural networks with maximal adaptive efficiency
A maximal-likelihood artificial neural system (MLANS) is described which performs the ML classification for problems requiring nonlinear classification boundaries. This neural network has ML neurons, which adaptively estimate the local metric in the classification space. This permits the design of flexible classifier shapes using a no-hidden-layer architecture and provides orders-of-magnitude improvement in learning efficiency. The learning efficiency of this network approaches the Cramer-Rao bounds with a relatively small number of samples. The learning process of MLANS can be unsupervised learning with partial or imperfect supervision. The ML approach allows for optimal fusion of all available information, such as a priori and real-time information, including supervisory (training) information.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bioelectronic Zeitgebers: targeted neuromodulation to re-establish circadian rhythms. MorpheusNet: Resource efficient sleep stage classifier for embedded on-line systems. LoST: A Mental Health Dataset of Low Self-esteem in Reddit Posts. Language Model-Guided Classifier Adaptation for Brain-Computer Interfaces for Communication. Pattern Recognition in Vital Signs Using Spectrograms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1