I. Pérez-Conesa, J. Fayos-Fernández, J. A. Aguilar Galea, J. Monzó-Cabrera, R. Pérez-Campos
{"title":"石墨和TiO2作为微波脱蜡感受器在艺术品陶瓷壳体铸造工艺中的评价","authors":"I. Pérez-Conesa, J. Fayos-Fernández, J. A. Aguilar Galea, J. Monzó-Cabrera, R. Pérez-Campos","doi":"10.1080/08327823.2022.2106730","DOIUrl":null,"url":null,"abstract":"Abstract The main problems of the traditional foundry dewaxing processes in fine arts workshops are the emission of gases, the loss of 80% of the wax, the high electrical consumption, and the high risks for the operators. The introduction of the microwave technology for dewaxing of ceramic shell molds allows to minimize some of these problems, although the use of electromagnetic susceptors that capture the radiated energy and transform it into heat is required. This article describes different microwave dewaxing tests using TiO2 and graphite as susceptors. The results obtained show that this technique is viable, allowing the casting process to be carried out with a low percentage of breakage problems in the mold and significantly reducing the emitted gases and electricity consumption. The technique allows to recover in the same operation around 90% of the wax used in small and medium format objects. The tests show that the selection of the material used as a susceptor, the area of application and the power regimes, are fundamental to enable a controlled, soft and non-aggressive dewaxing, both for the art molds and for the environment, as opposed to the traditional Flash Dewaxing technique. In this way, it is possible to change the foundry of ceramic shells for artworks to achieve high levels of performance and safety, and to save energy, time and materials.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"77 1","pages":"201 - 215"},"PeriodicalIF":0.9000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of graphite and TiO2 as susceptors for microwave dewaxing in ceramic shell casting processes of artworks\",\"authors\":\"I. Pérez-Conesa, J. Fayos-Fernández, J. A. Aguilar Galea, J. Monzó-Cabrera, R. Pérez-Campos\",\"doi\":\"10.1080/08327823.2022.2106730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main problems of the traditional foundry dewaxing processes in fine arts workshops are the emission of gases, the loss of 80% of the wax, the high electrical consumption, and the high risks for the operators. The introduction of the microwave technology for dewaxing of ceramic shell molds allows to minimize some of these problems, although the use of electromagnetic susceptors that capture the radiated energy and transform it into heat is required. This article describes different microwave dewaxing tests using TiO2 and graphite as susceptors. The results obtained show that this technique is viable, allowing the casting process to be carried out with a low percentage of breakage problems in the mold and significantly reducing the emitted gases and electricity consumption. The technique allows to recover in the same operation around 90% of the wax used in small and medium format objects. The tests show that the selection of the material used as a susceptor, the area of application and the power regimes, are fundamental to enable a controlled, soft and non-aggressive dewaxing, both for the art molds and for the environment, as opposed to the traditional Flash Dewaxing technique. In this way, it is possible to change the foundry of ceramic shells for artworks to achieve high levels of performance and safety, and to save energy, time and materials.\",\"PeriodicalId\":16556,\"journal\":{\"name\":\"Journal of Microwave Power and Electromagnetic Energy\",\"volume\":\"77 1\",\"pages\":\"201 - 215\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microwave Power and Electromagnetic Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/08327823.2022.2106730\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwave Power and Electromagnetic Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08327823.2022.2106730","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Evaluation of graphite and TiO2 as susceptors for microwave dewaxing in ceramic shell casting processes of artworks
Abstract The main problems of the traditional foundry dewaxing processes in fine arts workshops are the emission of gases, the loss of 80% of the wax, the high electrical consumption, and the high risks for the operators. The introduction of the microwave technology for dewaxing of ceramic shell molds allows to minimize some of these problems, although the use of electromagnetic susceptors that capture the radiated energy and transform it into heat is required. This article describes different microwave dewaxing tests using TiO2 and graphite as susceptors. The results obtained show that this technique is viable, allowing the casting process to be carried out with a low percentage of breakage problems in the mold and significantly reducing the emitted gases and electricity consumption. The technique allows to recover in the same operation around 90% of the wax used in small and medium format objects. The tests show that the selection of the material used as a susceptor, the area of application and the power regimes, are fundamental to enable a controlled, soft and non-aggressive dewaxing, both for the art molds and for the environment, as opposed to the traditional Flash Dewaxing technique. In this way, it is possible to change the foundry of ceramic shells for artworks to achieve high levels of performance and safety, and to save energy, time and materials.
期刊介绍:
The Journal of the Microwave Power Energy (JMPEE) is a quarterly publication of the International Microwave Power Institute (IMPI), aimed to be one of the primary sources of the most reliable information in the arts and sciences of microwave and RF technology. JMPEE provides space to engineers and researchers for presenting papers about non-communication applications of microwave and RF, mostly industrial, scientific, medical and instrumentation. Topics include, but are not limited to: applications in materials science and nanotechnology, characterization of biological tissues, food industry applications, green chemistry, health and therapeutic applications, microwave chemistry, microwave processing of materials, soil remediation, and waste processing.