{"title":"脂质体中的正磷酸钙用于联合递送盐酸阿霉素/紫杉醇治疗乳腺癌","authors":"Xiangjun Chen, Huayu He, Xinyu Guo, Mingyi Hou, Xinzhong Zhang, Shengnan Li, Changrong Wang, Guodong Zhao, Wenting Li*, Xiuping Zhang* and Wei Hong*, ","doi":"10.1021/acs.molpharmaceut.3c00015","DOIUrl":null,"url":null,"abstract":"<p >Nanoparticles (NPs) show great advantages in cancer treatment by enabling controlled and targeted delivery of payloads to tumor sites through the enhanced permeability and retention (EPR) effect. In this study, highly effective pH-responsive and biodegradable calcium orthophosphate@liposomes (CaP@Lip) NPs with a diameter of 110 ± 20 nm were designed and fabricated. CaP@Lip NPs loaded with hydrophobic paclitaxel and hydrophilic doxorubicin hydrochloride achieved excellent drug loading efficiencies of 70 and 90%, respectively. Under physiological conditions, the obtained NPs are negatively charged. However, they switched to positively charged when exposed to weak acidic environments by which internalization can be promoted. Furthermore, the CaP@Lip NPs exhibit an obvious structural collapse under acid conditions (pH 5.5), which confirms their excellent biodegradability. The “proton expansion” effect in endosomes and the pH-responsiveness of the NPs facilitate the release of encapsulated drugs from individual channels. The effectiveness and safety of the drug delivery systems were demonstrated through in vitro and in vivo experiments, with a 76% inhibition of tumor growth. These findings highlight the high targeting ability of the drug-loaded NPs to tumor sites through the EPR effect, effectively suppressing tumor growth and metastasis. By combining CaP NPs and liposomes, this study not only resolves the toxicity of CaP but also enhances the stability of liposomes. The CaP@Lip NPs developed in this study have significant implications for biomedical applications and inspire the development of intelligent and smart drug nanocarriers and release systems for clinical use.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"20 8","pages":"3914–3924"},"PeriodicalIF":4.5000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcium Orthophosphate in Liposomes for Co-Delivery of Doxorubicin Hydrochloride/Paclitaxel in Breast Cancer\",\"authors\":\"Xiangjun Chen, Huayu He, Xinyu Guo, Mingyi Hou, Xinzhong Zhang, Shengnan Li, Changrong Wang, Guodong Zhao, Wenting Li*, Xiuping Zhang* and Wei Hong*, \",\"doi\":\"10.1021/acs.molpharmaceut.3c00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanoparticles (NPs) show great advantages in cancer treatment by enabling controlled and targeted delivery of payloads to tumor sites through the enhanced permeability and retention (EPR) effect. In this study, highly effective pH-responsive and biodegradable calcium orthophosphate@liposomes (CaP@Lip) NPs with a diameter of 110 ± 20 nm were designed and fabricated. CaP@Lip NPs loaded with hydrophobic paclitaxel and hydrophilic doxorubicin hydrochloride achieved excellent drug loading efficiencies of 70 and 90%, respectively. Under physiological conditions, the obtained NPs are negatively charged. However, they switched to positively charged when exposed to weak acidic environments by which internalization can be promoted. Furthermore, the CaP@Lip NPs exhibit an obvious structural collapse under acid conditions (pH 5.5), which confirms their excellent biodegradability. The “proton expansion” effect in endosomes and the pH-responsiveness of the NPs facilitate the release of encapsulated drugs from individual channels. The effectiveness and safety of the drug delivery systems were demonstrated through in vitro and in vivo experiments, with a 76% inhibition of tumor growth. These findings highlight the high targeting ability of the drug-loaded NPs to tumor sites through the EPR effect, effectively suppressing tumor growth and metastasis. By combining CaP NPs and liposomes, this study not only resolves the toxicity of CaP but also enhances the stability of liposomes. The CaP@Lip NPs developed in this study have significant implications for biomedical applications and inspire the development of intelligent and smart drug nanocarriers and release systems for clinical use.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\"20 8\",\"pages\":\"3914–3924\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.3c00015\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.3c00015","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Calcium Orthophosphate in Liposomes for Co-Delivery of Doxorubicin Hydrochloride/Paclitaxel in Breast Cancer
Nanoparticles (NPs) show great advantages in cancer treatment by enabling controlled and targeted delivery of payloads to tumor sites through the enhanced permeability and retention (EPR) effect. In this study, highly effective pH-responsive and biodegradable calcium orthophosphate@liposomes (CaP@Lip) NPs with a diameter of 110 ± 20 nm were designed and fabricated. CaP@Lip NPs loaded with hydrophobic paclitaxel and hydrophilic doxorubicin hydrochloride achieved excellent drug loading efficiencies of 70 and 90%, respectively. Under physiological conditions, the obtained NPs are negatively charged. However, they switched to positively charged when exposed to weak acidic environments by which internalization can be promoted. Furthermore, the CaP@Lip NPs exhibit an obvious structural collapse under acid conditions (pH 5.5), which confirms their excellent biodegradability. The “proton expansion” effect in endosomes and the pH-responsiveness of the NPs facilitate the release of encapsulated drugs from individual channels. The effectiveness and safety of the drug delivery systems were demonstrated through in vitro and in vivo experiments, with a 76% inhibition of tumor growth. These findings highlight the high targeting ability of the drug-loaded NPs to tumor sites through the EPR effect, effectively suppressing tumor growth and metastasis. By combining CaP NPs and liposomes, this study not only resolves the toxicity of CaP but also enhances the stability of liposomes. The CaP@Lip NPs developed in this study have significant implications for biomedical applications and inspire the development of intelligent and smart drug nanocarriers and release systems for clinical use.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.