具有动态任务依赖关系的可伸缩增量构建

Gabriël D. P. Konat, Sebastian Erdweg, E. Visser
{"title":"具有动态任务依赖关系的可伸缩增量构建","authors":"Gabriël D. P. Konat, Sebastian Erdweg, E. Visser","doi":"10.1145/3238147.3238196","DOIUrl":null,"url":null,"abstract":"Incremental build systems are essential for fast, reproducible software builds. Incremental build systems enable short feedback cycles when they capture dependencies precisely and selectively execute build tasks efficiently. A much overlooked feature of build systems is the expressiveness of the scripting language, which directly influences the maintainability of build scripts. In this paper, we present a new incremental build algorithm that allows build engineers to use a full-fledged programming language with explicit task invocation, value and file inspection facilities, and conditional and iterative language constructs. In contrast to prior work on incrementality for such programmable builds, our algorithm scales with the number of tasks affected by a change and is independent of the size of the software project being built. Specifically, our algorithm accepts a set of changed files, transitively detects and re-executes affected build tasks, but also accounts for new task dependencies discovered during building. We have evaluated the performance of our algorithm in a real-world case study and confirm its scalability.","PeriodicalId":6622,"journal":{"name":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"19 1","pages":"76-86"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Scalable Incremental Building with Dynamic Task Dependencies\",\"authors\":\"Gabriël D. P. Konat, Sebastian Erdweg, E. Visser\",\"doi\":\"10.1145/3238147.3238196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incremental build systems are essential for fast, reproducible software builds. Incremental build systems enable short feedback cycles when they capture dependencies precisely and selectively execute build tasks efficiently. A much overlooked feature of build systems is the expressiveness of the scripting language, which directly influences the maintainability of build scripts. In this paper, we present a new incremental build algorithm that allows build engineers to use a full-fledged programming language with explicit task invocation, value and file inspection facilities, and conditional and iterative language constructs. In contrast to prior work on incrementality for such programmable builds, our algorithm scales with the number of tasks affected by a change and is independent of the size of the software project being built. Specifically, our algorithm accepts a set of changed files, transitively detects and re-executes affected build tasks, but also accounts for new task dependencies discovered during building. We have evaluated the performance of our algorithm in a real-world case study and confirm its scalability.\",\"PeriodicalId\":6622,\"journal\":{\"name\":\"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"19 1\",\"pages\":\"76-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3238147.3238196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3238147.3238196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

增量构建系统对于快速、可复制的软件构建是必不可少的。增量构建系统在精确捕获依赖项并有选择地高效执行构建任务时,支持短的反馈周期。构建系统的一个经常被忽视的特性是脚本语言的表达性,它直接影响构建脚本的可维护性。在本文中,我们提出了一种新的增量构建算法,该算法允许构建工程师使用具有显式任务调用、值和文件检查功能以及条件和迭代语言结构的成熟编程语言。与之前针对这种可编程构建的增量工作相反,我们的算法随着受更改影响的任务数量而扩展,并且独立于正在构建的软件项目的大小。具体来说,我们的算法接受一组更改的文件,传递地检测并重新执行受影响的构建任务,但也考虑在构建过程中发现的新任务依赖关系。我们已经在实际案例研究中评估了算法的性能,并确认了其可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable Incremental Building with Dynamic Task Dependencies
Incremental build systems are essential for fast, reproducible software builds. Incremental build systems enable short feedback cycles when they capture dependencies precisely and selectively execute build tasks efficiently. A much overlooked feature of build systems is the expressiveness of the scripting language, which directly influences the maintainability of build scripts. In this paper, we present a new incremental build algorithm that allows build engineers to use a full-fledged programming language with explicit task invocation, value and file inspection facilities, and conditional and iterative language constructs. In contrast to prior work on incrementality for such programmable builds, our algorithm scales with the number of tasks affected by a change and is independent of the size of the software project being built. Specifically, our algorithm accepts a set of changed files, transitively detects and re-executes affected build tasks, but also accounts for new task dependencies discovered during building. We have evaluated the performance of our algorithm in a real-world case study and confirm its scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatically Testing Implementations of Numerical Abstract Domains Self-Protection of Android Systems from Inter-component Communication Attacks Characterizing the Natural Language Descriptions in Software Logging Statements DroidMate-2: A Platform for Android Test Generation CPA-SymExec: Efficient Symbolic Execution in CPAchecker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1