单向弯曲GFRP复合材料中缺陷尺寸的TSR脉冲热成像与锁相热成像的比较研究

G. R, R. K.
{"title":"单向弯曲GFRP复合材料中缺陷尺寸的TSR脉冲热成像与锁相热成像的比较研究","authors":"G. R, R. K.","doi":"10.37255/jme.v18i1pp030-036","DOIUrl":null,"url":null,"abstract":"Glass fiber reinforced polymer (GFRP) curved composite is widely used in industries due to its high corrosive resistance nature. GFRP curved composites are involved in many industries like petrochemical industries for handling oil and gas at offshore platforms, chemical processes such as chemical storage tanks, desalination, and water treatment. Since alloy steel materials get corroded by environmental factors such as excess salinity in the surrounding environment, mud deposition, and sulfur crude accumulation makes alloy steel pipes are expensive to maintain. Every year billions of dollars can be saved by corrosion prevention using Glass Fiber Reinforced Polymer (GFRP) pipes instead of alloy steel pipes. In-service stage of the GFRP pipe or tank, different types of defects are forming such as void, delamination, and wall loss (pits). Among all these defects, pits or wall loss is one of the severe defects which may lead to leakage accidents. The objective of the study is the quantification of defect size by using TSR processed pulsed and lock-in thermography and analyses their capabilities in defect size quantification. TSR processed the PT image and the signal to noise ratio was used to estimate the defect size quantification. For defect size measurement, the TSR-processed PT thermal results are recommended and the near-surface defects can be measured with high accuracy in LT.","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect Size Characterization in Unidirectional Curved GFRP Composite by TSR Processed Pulse and Lock in Thermography: A Comparison Study\",\"authors\":\"G. R, R. K.\",\"doi\":\"10.37255/jme.v18i1pp030-036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glass fiber reinforced polymer (GFRP) curved composite is widely used in industries due to its high corrosive resistance nature. GFRP curved composites are involved in many industries like petrochemical industries for handling oil and gas at offshore platforms, chemical processes such as chemical storage tanks, desalination, and water treatment. Since alloy steel materials get corroded by environmental factors such as excess salinity in the surrounding environment, mud deposition, and sulfur crude accumulation makes alloy steel pipes are expensive to maintain. Every year billions of dollars can be saved by corrosion prevention using Glass Fiber Reinforced Polymer (GFRP) pipes instead of alloy steel pipes. In-service stage of the GFRP pipe or tank, different types of defects are forming such as void, delamination, and wall loss (pits). Among all these defects, pits or wall loss is one of the severe defects which may lead to leakage accidents. The objective of the study is the quantification of defect size by using TSR processed pulsed and lock-in thermography and analyses their capabilities in defect size quantification. TSR processed the PT image and the signal to noise ratio was used to estimate the defect size quantification. For defect size measurement, the TSR-processed PT thermal results are recommended and the near-surface defects can be measured with high accuracy in LT.\",\"PeriodicalId\":38895,\"journal\":{\"name\":\"Academic Journal of Manufacturing Engineering\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37255/jme.v18i1pp030-036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/jme.v18i1pp030-036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

玻璃纤维增强聚合物(GFRP)弯曲复合材料因其高耐腐蚀性而在工业上得到广泛应用。GFRP弯曲复合材料涉及许多行业,如石油化工行业,用于处理海上平台的石油和天然气,化学工艺,如化学储罐,海水淡化和水处理。由于周围环境盐度过高、泥浆沉积、含硫原油堆积等环境因素对合金钢材料的腐蚀,使得合金钢管道的维护成本较高。使用玻璃纤维增强聚合物(GFRP)管代替合金钢管来防止腐蚀,每年可以节省数十亿美元。在玻璃钢管道或储罐的使用阶段,会形成不同类型的缺陷,如空洞、分层、壁损(坑)等。在这些缺陷中,凹坑或壁损是可能导致泄漏事故的严重缺陷之一。本研究的目的是利用TSR处理的脉冲和锁定热成像技术对缺陷尺寸进行量化,并分析它们在缺陷尺寸量化方面的能力。对PT图像进行TSR处理,并利用信噪比定量估计缺陷尺寸。对于缺陷尺寸的测量,推荐使用tsr处理的PT热结果,在LT中可以高精度地测量近表面缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defect Size Characterization in Unidirectional Curved GFRP Composite by TSR Processed Pulse and Lock in Thermography: A Comparison Study
Glass fiber reinforced polymer (GFRP) curved composite is widely used in industries due to its high corrosive resistance nature. GFRP curved composites are involved in many industries like petrochemical industries for handling oil and gas at offshore platforms, chemical processes such as chemical storage tanks, desalination, and water treatment. Since alloy steel materials get corroded by environmental factors such as excess salinity in the surrounding environment, mud deposition, and sulfur crude accumulation makes alloy steel pipes are expensive to maintain. Every year billions of dollars can be saved by corrosion prevention using Glass Fiber Reinforced Polymer (GFRP) pipes instead of alloy steel pipes. In-service stage of the GFRP pipe or tank, different types of defects are forming such as void, delamination, and wall loss (pits). Among all these defects, pits or wall loss is one of the severe defects which may lead to leakage accidents. The objective of the study is the quantification of defect size by using TSR processed pulsed and lock-in thermography and analyses their capabilities in defect size quantification. TSR processed the PT image and the signal to noise ratio was used to estimate the defect size quantification. For defect size measurement, the TSR-processed PT thermal results are recommended and the near-surface defects can be measured with high accuracy in LT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Academic Journal of Manufacturing Engineering
Academic Journal of Manufacturing Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Investigations On Mechanical Properties Of Micro Particulates (Al2O3/B4C) Reinforced In Aluminium 7075 Matrix Composite Welding Windows for Aluminum-Magnesium and Titanium-Steel Explosive Cladding Tribological Performance Evaluation of TMPTO Based Nano-Lubricants Modeling of Resistance Spot Welding Using FEM Efficiency Enhancement of Heat Transfer Fluids by Using Carbon Dots Nanoparticles Derived From Aloe Vera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1