早期的S{sub n}方法

K. D. Lathrop
{"title":"早期的S{sub n}方法","authors":"K. D. Lathrop","doi":"10.2172/10149264","DOIUrl":null,"url":null,"abstract":"From the beginning at Los Alamos National Laboratory (LANL), solutions to the transport equation were very important. Many long-forgotten approximate solution techniques, including one by Feynman, were developed to help design nuclear weapons. Most of these methods were based on the methods of mathematical physics familiar to the project physicists and predated the use of computers, but continued research and pressing need produced two new and powerful computer-based systems: Monte Carlo and the S[sub N] method. The healthy and long-term competition between the two LANL groups responsible for these quite different approaches was both stimulating and synergistic.","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1992-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The early days of the S{sub n} method\",\"authors\":\"K. D. Lathrop\",\"doi\":\"10.2172/10149264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the beginning at Los Alamos National Laboratory (LANL), solutions to the transport equation were very important. Many long-forgotten approximate solution techniques, including one by Feynman, were developed to help design nuclear weapons. Most of these methods were based on the methods of mathematical physics familiar to the project physicists and predated the use of computers, but continued research and pressing need produced two new and powerful computer-based systems: Monte Carlo and the S[sub N] method. The healthy and long-term competition between the two LANL groups responsible for these quite different approaches was both stimulating and synergistic.\",\"PeriodicalId\":23138,\"journal\":{\"name\":\"Transactions of the American Nuclear Society\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Nuclear Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2172/10149264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Nuclear Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/10149264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从洛斯阿拉莫斯国家实验室(Los Alamos National Laboratory, LANL)开始,输运方程的解就非常重要。许多长期被遗忘的近似解技术,包括费曼的一种,都是为了帮助设计核武器而开发的。这些方法大多是基于项目物理学家熟悉的数学物理方法,并且早于计算机的使用,但持续的研究和迫切的需求产生了两个新的强大的基于计算机的系统:蒙特卡罗和S[sub N]方法。负责这些截然不同的方法的两个LANL集团之间健康和长期的竞争既刺激又协同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The early days of the S{sub n} method
From the beginning at Los Alamos National Laboratory (LANL), solutions to the transport equation were very important. Many long-forgotten approximate solution techniques, including one by Feynman, were developed to help design nuclear weapons. Most of these methods were based on the methods of mathematical physics familiar to the project physicists and predated the use of computers, but continued research and pressing need produced two new and powerful computer-based systems: Monte Carlo and the S[sub N] method. The healthy and long-term competition between the two LANL groups responsible for these quite different approaches was both stimulating and synergistic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
McCad Plugin Developments for the SpaceClaim Software Neutronics Analysis for Designing a Low Activation Heated Test Cell From Nuclear Data to Reactor Design Matrix Riccati Equation Method (MREM) of Solution of the Neutron Transfer Equation Optimal Sizing of a Micro-Reactor for Embedded Grid Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1