Seth Pree, John P. Koulakis, Alexander L. F. Thornton, S. Putterman
{"title":"等离子灯声对流弛豫振荡","authors":"Seth Pree, John P. Koulakis, Alexander L. F. Thornton, S. Putterman","doi":"10.1121/2.0000865","DOIUrl":null,"url":null,"abstract":"Periodic instability in sulfur plasma bulbs driven at their acoustic resonant frequency leads to behavior similar to a relaxation oscillation. This instability, which develops over the course of more than 500 acoustic periods manifests as both an oscillation in the total luminosity of the lamp and a frequency modulation of the resonator. We present evidence that the cause of this oscillation cycle stems from periodic eruptions of plasma from within a region near the acoustic velocity antinode. We propose that these oscillations and eruptions indicate a coupling between high amplitude acoustic waves and interface waves and consider whether this system might provide a platform with which to study turbulent heat transport.Periodic instability in sulfur plasma bulbs driven at their acoustic resonant frequency leads to behavior similar to a relaxation oscillation. This instability, which develops over the course of more than 500 acoustic periods manifests as both an oscillation in the total luminosity of the lamp and a frequency modulation of the resonator. We present evidence that the cause of this oscillation cycle stems from periodic eruptions of plasma from within a region near the acoustic velocity antinode. We propose that these oscillations and eruptions indicate a coupling between high amplitude acoustic waves and interface waves and consider whether this system might provide a platform with which to study turbulent heat transport.","PeriodicalId":20469,"journal":{"name":"Proc. Meet. Acoust.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Acousto-convective relaxation oscillation in plasma lamp\",\"authors\":\"Seth Pree, John P. Koulakis, Alexander L. F. Thornton, S. Putterman\",\"doi\":\"10.1121/2.0000865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodic instability in sulfur plasma bulbs driven at their acoustic resonant frequency leads to behavior similar to a relaxation oscillation. This instability, which develops over the course of more than 500 acoustic periods manifests as both an oscillation in the total luminosity of the lamp and a frequency modulation of the resonator. We present evidence that the cause of this oscillation cycle stems from periodic eruptions of plasma from within a region near the acoustic velocity antinode. We propose that these oscillations and eruptions indicate a coupling between high amplitude acoustic waves and interface waves and consider whether this system might provide a platform with which to study turbulent heat transport.Periodic instability in sulfur plasma bulbs driven at their acoustic resonant frequency leads to behavior similar to a relaxation oscillation. This instability, which develops over the course of more than 500 acoustic periods manifests as both an oscillation in the total luminosity of the lamp and a frequency modulation of the resonator. We present evidence that the cause of this oscillation cycle stems from periodic eruptions of plasma from within a region near the acoustic velocity antinode. We propose that these oscillations and eruptions indicate a coupling between high amplitude acoustic waves and interface waves and consider whether this system might provide a platform with which to study turbulent heat transport.\",\"PeriodicalId\":20469,\"journal\":{\"name\":\"Proc. Meet. Acoust.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. Meet. Acoust.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/2.0000865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. Meet. Acoust.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0000865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acousto-convective relaxation oscillation in plasma lamp
Periodic instability in sulfur plasma bulbs driven at their acoustic resonant frequency leads to behavior similar to a relaxation oscillation. This instability, which develops over the course of more than 500 acoustic periods manifests as both an oscillation in the total luminosity of the lamp and a frequency modulation of the resonator. We present evidence that the cause of this oscillation cycle stems from periodic eruptions of plasma from within a region near the acoustic velocity antinode. We propose that these oscillations and eruptions indicate a coupling between high amplitude acoustic waves and interface waves and consider whether this system might provide a platform with which to study turbulent heat transport.Periodic instability in sulfur plasma bulbs driven at their acoustic resonant frequency leads to behavior similar to a relaxation oscillation. This instability, which develops over the course of more than 500 acoustic periods manifests as both an oscillation in the total luminosity of the lamp and a frequency modulation of the resonator. We present evidence that the cause of this oscillation cycle stems from periodic eruptions of plasma from within a region near the acoustic velocity antinode. We propose that these oscillations and eruptions indicate a coupling between high amplitude acoustic waves and interface waves and consider whether this system might provide a platform with which to study turbulent heat transport.