一种有效的随机森林作物预测算法

V. Geetha, A. Punitha, M. Abarna, M. Akshaya, S. Illakiya, AP. Janani
{"title":"一种有效的随机森林作物预测算法","authors":"V. Geetha, A. Punitha, M. Abarna, M. Akshaya, S. Illakiya, AP. Janani","doi":"10.1109/ICSCAN49426.2020.9262311","DOIUrl":null,"url":null,"abstract":"Reliable predictions of crop yield are difficult for developing agriculture. Crop production varies by various climatic conditions like dried period, increasing in temperatures remains a huge problem for agriculture workers, governments, and traders to strengthen the need for exactness and analyzing of crop production in a different weather conditions. In this system, a machine-learning method, Random Forest algorithm has an ability to analyze crop growth related to the current climatic conditions and biophysical change. We have collected crop growth datasets from various sources. These datasets are used for both training and testing process. Random Forest classifier was found huge ability to predict crop yield. From different outputs, it shows that Random Forest is an efficient learning algorithm to analyze crop at current climatic condition and has a huge exactness in data investigation.","PeriodicalId":6744,"journal":{"name":"2020 International Conference on System, Computation, Automation and Networking (ICSCAN)","volume":"78 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"An Effective Crop Prediction Using Random Forest Algorithm\",\"authors\":\"V. Geetha, A. Punitha, M. Abarna, M. Akshaya, S. Illakiya, AP. Janani\",\"doi\":\"10.1109/ICSCAN49426.2020.9262311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable predictions of crop yield are difficult for developing agriculture. Crop production varies by various climatic conditions like dried period, increasing in temperatures remains a huge problem for agriculture workers, governments, and traders to strengthen the need for exactness and analyzing of crop production in a different weather conditions. In this system, a machine-learning method, Random Forest algorithm has an ability to analyze crop growth related to the current climatic conditions and biophysical change. We have collected crop growth datasets from various sources. These datasets are used for both training and testing process. Random Forest classifier was found huge ability to predict crop yield. From different outputs, it shows that Random Forest is an efficient learning algorithm to analyze crop at current climatic condition and has a huge exactness in data investigation.\",\"PeriodicalId\":6744,\"journal\":{\"name\":\"2020 International Conference on System, Computation, Automation and Networking (ICSCAN)\",\"volume\":\"78 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on System, Computation, Automation and Networking (ICSCAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCAN49426.2020.9262311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on System, Computation, Automation and Networking (ICSCAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCAN49426.2020.9262311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

对发展中的农业来说,可靠的作物产量预测是困难的。作物产量因不同的气候条件而异,如干旱期、气温升高仍然是农业工人、政府和贸易商需要加强对不同天气条件下作物产量的准确性和分析的一个巨大问题。在这个系统中,一种机器学习方法,随机森林算法具有分析与当前气候条件和生物物理变化相关的作物生长的能力。我们从各种来源收集了作物生长数据集。这些数据集用于训练和测试过程。随机森林分类器对作物产量的预测能力非常强。从不同的输出结果来看,随机森林是一种分析当前气候条件下作物的高效学习算法,在数据调查中具有很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Effective Crop Prediction Using Random Forest Algorithm
Reliable predictions of crop yield are difficult for developing agriculture. Crop production varies by various climatic conditions like dried period, increasing in temperatures remains a huge problem for agriculture workers, governments, and traders to strengthen the need for exactness and analyzing of crop production in a different weather conditions. In this system, a machine-learning method, Random Forest algorithm has an ability to analyze crop growth related to the current climatic conditions and biophysical change. We have collected crop growth datasets from various sources. These datasets are used for both training and testing process. Random Forest classifier was found huge ability to predict crop yield. From different outputs, it shows that Random Forest is an efficient learning algorithm to analyze crop at current climatic condition and has a huge exactness in data investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Web Folder Phishing Discovery and Prevention with Customer Image Verification Taxonomy of keyword extraction in Facebook using Decision Tree algorithm in NLP A meta-analytic review of student satisfaction studies in higher education Enhanced Medical Data Security and Perceptual Quality for Healthcare services A Smart Trolley for Smart Shopping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1