Lin-Hu Wang, Fei Chen, Fan Yang, Shuhei Hoshika, M. Yamauti, Yunqing Liu, H. Sano
{"title":"生物活性两步法:有前途的一步自蚀刻通用胶粘剂粘接策略。","authors":"Lin-Hu Wang, Fei Chen, Fan Yang, Shuhei Hoshika, M. Yamauti, Yunqing Liu, H. Sano","doi":"10.3290/j.jad.a43236","DOIUrl":null,"url":null,"abstract":"PURPOSE To evaluate the potential of an additional application of two novel hydrophobic experimental adhesive resins with or without bioactive zinc fluoride glass to promote the bond strength of a one-step self-etch universal adhesive. MATERIALS AND METHODS Three self-etch universal adhesives, G-Premio Bond (GPB), Scotchbond Universal (SBU) and Clearfil SE Bond 2 (SE2), and two experimental adhesive resins, BZF210 and BZF21, were used in this study; thus, five groups were formed: GPB, GPB+BZF210, GPB+BZF21, SBU, and SE2. The adhesives were applied to flat dentin surfaces according to each manufacturer's instructions. The microtensile bond strengths (μTBS) were evaluated after 24-h water storage. The fracture modes and interfacial structures were analyzed using SEM, while elemental analysis was performed using SEM-EDS. The data were analyzed using one-way ANOVA and the Games-Howell test (p < 0.05). RESULTS Significantly higher μTBS was achieved by additional application of BZF210 (48.68 ± 6.59 MPa) and BZF21 (58.58 ± 2.84 MPa) compared with GPB (33.57 ± 4.22 MPa) alone. Most failures occurred above the smear layer in GBP, while more cohesive and mixed failures were observed in GBP+BZF210, GPB+BZF21, SBU, and SE2. The interfacial structures revealed that GBP+BZF210 and GPB+BZF21 had more and longer resin tags than did GPB. SEM-EDS showed a particularly high peak of zinc in GPB+BZF21. CONCLUSIONS The bond strength of GPB was significantly improved by the additional application of BZF210 and BZF21. Using an additional bioactive hydrophobic layer on a one-step, self-etch universal adhesive can significantly improve its bonding efficacy and extend its clinical options.","PeriodicalId":94234,"journal":{"name":"The journal of adhesive dentistry","volume":"119 1","pages":"413-421"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bioactive Two-step Approach: Promising Bonding Strategy for a One-step Self-etch Universal Adhesive.\",\"authors\":\"Lin-Hu Wang, Fei Chen, Fan Yang, Shuhei Hoshika, M. Yamauti, Yunqing Liu, H. Sano\",\"doi\":\"10.3290/j.jad.a43236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PURPOSE To evaluate the potential of an additional application of two novel hydrophobic experimental adhesive resins with or without bioactive zinc fluoride glass to promote the bond strength of a one-step self-etch universal adhesive. MATERIALS AND METHODS Three self-etch universal adhesives, G-Premio Bond (GPB), Scotchbond Universal (SBU) and Clearfil SE Bond 2 (SE2), and two experimental adhesive resins, BZF210 and BZF21, were used in this study; thus, five groups were formed: GPB, GPB+BZF210, GPB+BZF21, SBU, and SE2. The adhesives were applied to flat dentin surfaces according to each manufacturer's instructions. The microtensile bond strengths (μTBS) were evaluated after 24-h water storage. The fracture modes and interfacial structures were analyzed using SEM, while elemental analysis was performed using SEM-EDS. The data were analyzed using one-way ANOVA and the Games-Howell test (p < 0.05). RESULTS Significantly higher μTBS was achieved by additional application of BZF210 (48.68 ± 6.59 MPa) and BZF21 (58.58 ± 2.84 MPa) compared with GPB (33.57 ± 4.22 MPa) alone. Most failures occurred above the smear layer in GBP, while more cohesive and mixed failures were observed in GBP+BZF210, GPB+BZF21, SBU, and SE2. The interfacial structures revealed that GBP+BZF210 and GPB+BZF21 had more and longer resin tags than did GPB. SEM-EDS showed a particularly high peak of zinc in GPB+BZF21. CONCLUSIONS The bond strength of GPB was significantly improved by the additional application of BZF210 and BZF21. Using an additional bioactive hydrophobic layer on a one-step, self-etch universal adhesive can significantly improve its bonding efficacy and extend its clinical options.\",\"PeriodicalId\":94234,\"journal\":{\"name\":\"The journal of adhesive dentistry\",\"volume\":\"119 1\",\"pages\":\"413-421\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of adhesive dentistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3290/j.jad.a43236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of adhesive dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3290/j.jad.a43236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
目的评价两种新型疏水实验胶粘剂在加或不加生物活性氟化锌玻璃的情况下,对提高一步自蚀刻通用胶粘剂的粘接强度的潜力。材料与方法采用G-Premio Bond (GPB)、Scotchbond universal (SBU)和Clearfil SE Bond 2 (SE2)三种自蚀通用胶粘剂,以及BZF210和BZF21两种实验胶粘剂;由此形成GPB、GPB+BZF210、GPB+BZF21、SBU和SE2 5组。根据每个制造商的说明,将胶粘剂应用于牙本质的平面表面。在蓄水24 h后,测定其微拉伸结合强度(μTBS)。采用扫描电子显微镜(SEM)和扫描电子能谱仪(SEM- eds)对断裂模式和界面结构进行了分析。数据分析采用单因素方差分析和Games-Howell检验(p < 0.05)。结果加用BZF210(48.68±6.59 MPa)和BZF21(58.58±2.84 MPa)的μTBS明显高于单独加用GPB(33.57±4.22 MPa)。GBP中大部分失效发生在涂抹层以上,而GBP+BZF210、GPB+BZF21、SBU和SE2中更多的是内聚性和混合性失效。界面结构显示GBP+BZF210和GPB+BZF21比GPB具有更多和更长的树脂标签。SEM-EDS显示GPB+BZF21中锌的峰值特别高。结论添加BZF210和BZF21可显著提高GPB的结合强度。在一步式自蚀刻通用胶粘剂上增加一层生物活性疏水层,可以显著提高其粘接效果,扩大其临床应用范围。
Bioactive Two-step Approach: Promising Bonding Strategy for a One-step Self-etch Universal Adhesive.
PURPOSE To evaluate the potential of an additional application of two novel hydrophobic experimental adhesive resins with or without bioactive zinc fluoride glass to promote the bond strength of a one-step self-etch universal adhesive. MATERIALS AND METHODS Three self-etch universal adhesives, G-Premio Bond (GPB), Scotchbond Universal (SBU) and Clearfil SE Bond 2 (SE2), and two experimental adhesive resins, BZF210 and BZF21, were used in this study; thus, five groups were formed: GPB, GPB+BZF210, GPB+BZF21, SBU, and SE2. The adhesives were applied to flat dentin surfaces according to each manufacturer's instructions. The microtensile bond strengths (μTBS) were evaluated after 24-h water storage. The fracture modes and interfacial structures were analyzed using SEM, while elemental analysis was performed using SEM-EDS. The data were analyzed using one-way ANOVA and the Games-Howell test (p < 0.05). RESULTS Significantly higher μTBS was achieved by additional application of BZF210 (48.68 ± 6.59 MPa) and BZF21 (58.58 ± 2.84 MPa) compared with GPB (33.57 ± 4.22 MPa) alone. Most failures occurred above the smear layer in GBP, while more cohesive and mixed failures were observed in GBP+BZF210, GPB+BZF21, SBU, and SE2. The interfacial structures revealed that GBP+BZF210 and GPB+BZF21 had more and longer resin tags than did GPB. SEM-EDS showed a particularly high peak of zinc in GPB+BZF21. CONCLUSIONS The bond strength of GPB was significantly improved by the additional application of BZF210 and BZF21. Using an additional bioactive hydrophobic layer on a one-step, self-etch universal adhesive can significantly improve its bonding efficacy and extend its clinical options.