非参数谱估计技术估计心房颤动检测的优势频率

Shafa-At Ali Sheikh, Aftab Zafar Majoka, K. Rehman, N. Razzaq, T. Zaidi
{"title":"非参数谱估计技术估计心房颤动检测的优势频率","authors":"Shafa-At Ali Sheikh, Aftab Zafar Majoka, K. Rehman, N. Razzaq, T. Zaidi","doi":"10.4236/JSIP.2015.64025","DOIUrl":null,"url":null,"abstract":"Atrial fibrillation (Afib) is related with heart failure, stroke, and high mortality rates. In frequency domain analysis, pre-requisite for Afib detection has been the estimation of reliable dominant frequency (DF) of atrial signals via different spectral estimation techniques. DF further characterizes Afib, and helps in its treatment. This paper aims at finding the most appropriate nonparametric FFT-based spectral estimation technique to estimate reliable DF for Afib detection. In this work, real-time intra-atrial electrograms have been acquired and pre-processed for frequency analysis. DF is estimated via Bartlett using Hanning window, and Welch methods. Regularity index (RI), a parameter to ensure reliability of DF, is calculated using Simpson 3/8 and Trapezoidal rules. The best method is declared based upon high accuracy of Afib detection using reliable DF. On comparison, Welch method is found to be more appropriate to estimate reliable DF for Afib detection with 98% accuracy.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"102 1","pages":"266-276"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Nonparametric Spectral Estimation Technique to Estimate Dominant Frequency for Atrial Fibrillation Detection\",\"authors\":\"Shafa-At Ali Sheikh, Aftab Zafar Majoka, K. Rehman, N. Razzaq, T. Zaidi\",\"doi\":\"10.4236/JSIP.2015.64025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atrial fibrillation (Afib) is related with heart failure, stroke, and high mortality rates. In frequency domain analysis, pre-requisite for Afib detection has been the estimation of reliable dominant frequency (DF) of atrial signals via different spectral estimation techniques. DF further characterizes Afib, and helps in its treatment. This paper aims at finding the most appropriate nonparametric FFT-based spectral estimation technique to estimate reliable DF for Afib detection. In this work, real-time intra-atrial electrograms have been acquired and pre-processed for frequency analysis. DF is estimated via Bartlett using Hanning window, and Welch methods. Regularity index (RI), a parameter to ensure reliability of DF, is calculated using Simpson 3/8 and Trapezoidal rules. The best method is declared based upon high accuracy of Afib detection using reliable DF. On comparison, Welch method is found to be more appropriate to estimate reliable DF for Afib detection with 98% accuracy.\",\"PeriodicalId\":38474,\"journal\":{\"name\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"volume\":\"102 1\",\"pages\":\"266-276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/JSIP.2015.64025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JSIP.2015.64025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 5

摘要

心房颤动(Afib)与心力衰竭、中风和高死亡率有关。在频域分析中,房颤检测的先决条件是通过不同的频谱估计技术估计房颤信号的可靠主频(DF)。DF进一步表征了Afib,并有助于其治疗。本文旨在寻找最合适的基于非参数傅里叶变换的频谱估计技术,以估计可靠的光纤光纤检测的DF。在这项工作中,实时心房电图已经获得并预处理用于频率分析。通过Bartlett使用Hanning窗和Welch方法估计DF。正则性指数(RI)是保证DF可靠性的参数,采用Simpson 3/8规则和梯形规则计算。最佳方法是基于使用可靠的DF检测Afib的高准确性。通过比较,发现Welch方法更适合估计Afib检测的可靠DF,准确率为98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonparametric Spectral Estimation Technique to Estimate Dominant Frequency for Atrial Fibrillation Detection
Atrial fibrillation (Afib) is related with heart failure, stroke, and high mortality rates. In frequency domain analysis, pre-requisite for Afib detection has been the estimation of reliable dominant frequency (DF) of atrial signals via different spectral estimation techniques. DF further characterizes Afib, and helps in its treatment. This paper aims at finding the most appropriate nonparametric FFT-based spectral estimation technique to estimate reliable DF for Afib detection. In this work, real-time intra-atrial electrograms have been acquired and pre-processed for frequency analysis. DF is estimated via Bartlett using Hanning window, and Welch methods. Regularity index (RI), a parameter to ensure reliability of DF, is calculated using Simpson 3/8 and Trapezoidal rules. The best method is declared based upon high accuracy of Afib detection using reliable DF. On comparison, Welch method is found to be more appropriate to estimate reliable DF for Afib detection with 98% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Variational Mode Decomposition for Bearing Fault Detection White Blood Cells Detection Using Spectral Tresholding 3D Ergonomic Board: Kids Teaching and Learning Proposition Design and Evaluation of a Distributed Security Framework for the Internet of Things Improved Bearing Fault Diagnosis by Feature Extraction Based on GLCM, Fusion of Selection Methods, and Multiclass-Naïve Bayes Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1