基于小波包能量和PNN分析的滚动轴承故障诊断方法

Jingyi Zhang, Lan Wang, M. Zhu, Yuan Zhu, Qing Yang
{"title":"基于小波包能量和PNN分析的滚动轴承故障诊断方法","authors":"Jingyi Zhang, Lan Wang, M. Zhu, Yuan Zhu, Qing Yang","doi":"10.1109/ICNC.2012.6234751","DOIUrl":null,"url":null,"abstract":"A combined approach based on wavelet packet energy and probabilistic neural network (WPE-PNN) is presented to diagnose faults in the rolling bearing vibration signal research. Firstly wavelet packet is used to decompose rolling bearing vibration signals into three-layer, and extract the energy characteristics. Then PNN is proposed to diagnose faults. Finally, remote fault diagnosis is realized by virtual instrument technology. The proposed method can provide an accepted degree of accuracy in fault classification under different fault conditions and can be operated remotely from another station connected to the server via the World Wide Web.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"124 1","pages":"229-232"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fault diagnosis based on wavelet packet energy and PNN analysis method for rolling bearing\",\"authors\":\"Jingyi Zhang, Lan Wang, M. Zhu, Yuan Zhu, Qing Yang\",\"doi\":\"10.1109/ICNC.2012.6234751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A combined approach based on wavelet packet energy and probabilistic neural network (WPE-PNN) is presented to diagnose faults in the rolling bearing vibration signal research. Firstly wavelet packet is used to decompose rolling bearing vibration signals into three-layer, and extract the energy characteristics. Then PNN is proposed to diagnose faults. Finally, remote fault diagnosis is realized by virtual instrument technology. The proposed method can provide an accepted degree of accuracy in fault classification under different fault conditions and can be operated remotely from another station connected to the server via the World Wide Web.\",\"PeriodicalId\":87274,\"journal\":{\"name\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"volume\":\"124 1\",\"pages\":\"229-232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于小波包能量和概率神经网络(WPE-PNN)的滚动轴承振动信号故障诊断方法。首先利用小波包对滚动轴承振动信号进行三层分解,提取振动信号的能量特征;然后提出PNN进行故障诊断。最后,利用虚拟仪器技术实现远程故障诊断。该方法可以在不同的故障条件下提供可接受的故障分类精度,并且可以通过万维网从连接到服务器的另一个站点远程操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault diagnosis based on wavelet packet energy and PNN analysis method for rolling bearing
A combined approach based on wavelet packet energy and probabilistic neural network (WPE-PNN) is presented to diagnose faults in the rolling bearing vibration signal research. Firstly wavelet packet is used to decompose rolling bearing vibration signals into three-layer, and extract the energy characteristics. Then PNN is proposed to diagnose faults. Finally, remote fault diagnosis is realized by virtual instrument technology. The proposed method can provide an accepted degree of accuracy in fault classification under different fault conditions and can be operated remotely from another station connected to the server via the World Wide Web.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BER and HPA Nonlinearities Compensation for Joint Polar Coded SCMA System over Rayleigh Fading Channels Harmonizing Wearable Biosensor Data Streams to Test Polysubstance Detection. eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data. Automatic Detection of Opioid Intake Using Wearable Biosensor. A New Mining Method to Detect Real Time Substance Use Events from Wearable Biosensor Data Stream.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1