使用增量学习算法从胸部x线图像诊断COVID-19

Mendel Pub Date : 2022-06-30 DOI:10.13164/mendel.2022.1.001
Rimah Amami, Suleiman Ali Al Saif, Rim Amami, Hassan Ahmed Eleraky, Fatma Melouli, Mariem Baazaoui
{"title":"使用增量学习算法从胸部x线图像诊断COVID-19","authors":"Rimah Amami, Suleiman Ali Al Saif, Rim Amami, Hassan Ahmed Eleraky, Fatma Melouli, Mariem Baazaoui","doi":"10.13164/mendel.2022.1.001","DOIUrl":null,"url":null,"abstract":"The new Coronavirus or simply Covid-19 causes an acute deadly disease. It has spread rapidly across the world, which has caused serious consequences for health professionals and researchers. This is due to many reasons including the lack of vaccine, shortage of testing kits and resources. Therefore, the main purpose of this study is to present an inexpensive alternative diagnostic tool for the detection of Covid-19 infection by using chest radiographs and Deep Convolutional Neural Network (DCNN) technique. In this paper, we have proposed a reliable and economical solution to detect COVID-19. This will be achieved by using X-rays of patients and an Incremental-DCNN (I-DCNN) based on ResNet-101 architecture. The datasets used in this study were collected from publicly available chest radiographs on medical repositories. The proposed I-DCNN method will help in diagnosing the positive Covid-19 patient by utilising three chest X-ray imagery groups, these will be: Covid-19, viral pneumonia, and healthy cases. Furthermore, the main contribution of this paper resides on the use of incremental learning in order to accommodate the detection system. This has high computational energy requirements, time consuming challenges, while working with large-scale and regularly evolving images. The incremental learning process will allow the recognition system to learn new datasets, while keeping the convolutional layers learned previously. The overall Covid-19 detection rate obtained using the proposed I-DCNN was of 98.70\\% which undeniably can contribute effectively to the detection of COVID-19 infection.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Use of an Incremental Learning Algorithm for Diagnosing COVID-19 from Chest X-ray Images\",\"authors\":\"Rimah Amami, Suleiman Ali Al Saif, Rim Amami, Hassan Ahmed Eleraky, Fatma Melouli, Mariem Baazaoui\",\"doi\":\"10.13164/mendel.2022.1.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new Coronavirus or simply Covid-19 causes an acute deadly disease. It has spread rapidly across the world, which has caused serious consequences for health professionals and researchers. This is due to many reasons including the lack of vaccine, shortage of testing kits and resources. Therefore, the main purpose of this study is to present an inexpensive alternative diagnostic tool for the detection of Covid-19 infection by using chest radiographs and Deep Convolutional Neural Network (DCNN) technique. In this paper, we have proposed a reliable and economical solution to detect COVID-19. This will be achieved by using X-rays of patients and an Incremental-DCNN (I-DCNN) based on ResNet-101 architecture. The datasets used in this study were collected from publicly available chest radiographs on medical repositories. The proposed I-DCNN method will help in diagnosing the positive Covid-19 patient by utilising three chest X-ray imagery groups, these will be: Covid-19, viral pneumonia, and healthy cases. Furthermore, the main contribution of this paper resides on the use of incremental learning in order to accommodate the detection system. This has high computational energy requirements, time consuming challenges, while working with large-scale and regularly evolving images. The incremental learning process will allow the recognition system to learn new datasets, while keeping the convolutional layers learned previously. The overall Covid-19 detection rate obtained using the proposed I-DCNN was of 98.70\\\\% which undeniably can contribute effectively to the detection of COVID-19 infection.\",\"PeriodicalId\":38293,\"journal\":{\"name\":\"Mendel\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mendel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13164/mendel.2022.1.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mendel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13164/mendel.2022.1.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

新型冠状病毒或简称为Covid-19,会导致一种急性致命疾病。它在世界各地迅速蔓延,给卫生专业人员和研究人员造成了严重后果。这是由于许多原因造成的,包括缺乏疫苗、检测包和资源短缺。因此,本研究的主要目的是通过胸片和深度卷积神经网络(DCNN)技术提供一种廉价的替代诊断工具来检测Covid-19感染。本文提出了一种可靠、经济的新型冠状病毒检测方案。这将通过使用患者的x射线和基于ResNet-101架构的增量- dcnn (I-DCNN)来实现。本研究中使用的数据集收集自医学知识库中公开可用的胸片。提出的I-DCNN方法将通过利用三个胸部x射线图像组来帮助诊断Covid-19阳性患者,这些组将是:Covid-19,病毒性肺炎和健康病例。此外,本文的主要贡献在于使用增量学习来适应检测系统。在处理大规模和定期演变的图像时,这具有很高的计算能量需求,耗时的挑战。增量学习过程将允许识别系统学习新的数据集,同时保持先前学习的卷积层。采用本文提出的I-DCNN获得的总体Covid-19检出率为98.70%,无疑可以有效地检测Covid-19感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Use of an Incremental Learning Algorithm for Diagnosing COVID-19 from Chest X-ray Images
The new Coronavirus or simply Covid-19 causes an acute deadly disease. It has spread rapidly across the world, which has caused serious consequences for health professionals and researchers. This is due to many reasons including the lack of vaccine, shortage of testing kits and resources. Therefore, the main purpose of this study is to present an inexpensive alternative diagnostic tool for the detection of Covid-19 infection by using chest radiographs and Deep Convolutional Neural Network (DCNN) technique. In this paper, we have proposed a reliable and economical solution to detect COVID-19. This will be achieved by using X-rays of patients and an Incremental-DCNN (I-DCNN) based on ResNet-101 architecture. The datasets used in this study were collected from publicly available chest radiographs on medical repositories. The proposed I-DCNN method will help in diagnosing the positive Covid-19 patient by utilising three chest X-ray imagery groups, these will be: Covid-19, viral pneumonia, and healthy cases. Furthermore, the main contribution of this paper resides on the use of incremental learning in order to accommodate the detection system. This has high computational energy requirements, time consuming challenges, while working with large-scale and regularly evolving images. The incremental learning process will allow the recognition system to learn new datasets, while keeping the convolutional layers learned previously. The overall Covid-19 detection rate obtained using the proposed I-DCNN was of 98.70\% which undeniably can contribute effectively to the detection of COVID-19 infection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mendel
Mendel Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Detecting Outliers Using Modified Recursive PCA Algorithm For Dynamic Streaming Data Stock and Structured Warrant Portfolio Optimization Using Black-Litterman Model and Binomial Method Optimized Fixed-Time Synergetic Controller via a modified Salp Swarm Algorithm for Acute and Chronic HBV Transmission System Initial Coin Offering Prediction Comparison Using Ridge Regression, Artificial Neural Network, Random Forest Regression, and Hybrid ANN-Ridge Predicting Football Match Outcomes with Machine Learning Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1