Lisa C. Shriver-Lake , Paul T. Charles , Andre A. Adams , Jake Fontana , Brett D. Martin
{"title":"使用磁性微珠和聚(N-(3-氨基丙基甲基丙烯酰胺))水凝胶支撑,大大提高乙酰胆碱酯酶在高温下的活性和稳定性的简单方法","authors":"Lisa C. Shriver-Lake , Paul T. Charles , Andre A. Adams , Jake Fontana , Brett D. Martin","doi":"10.1016/j.molcatb.2016.09.007","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal stabilization of enzymes is a critical factor in the development and reliability of enzyme-based processes and functional materials. Using a simple amine coupling approach for enzyme immobilization onto magnetic microbeads, followed by encasement of the beads in a hydrogel, we demonstrate that the thermal stability of the enzyme acetylcholinesterase can be increased dramatically. For example, when free and microbead-immobilized enzyme (“EM Conjugate”) are incubated overnight in a dry state at 63<!--> <!-->°C (140<!--> <!-->°F), the catalytic efficiency (k<sub>cat</sub>/K<sub>m</sub>) of the latter is higher than the former by six orders of magnitude (a factor of 2.16<!--> <!-->×<!--> <!-->10<sup>6</sup>). This effect arises mostly through a ∼29,700-fold decrease in K<sub>m</sub> experienced by the EM Conjugate, relative to that of the free enzyme. Encapsulation of the EM Conjugate in a hydrogel based on poly(N-(3-aminopropyl methacrylamide)), which contains a primary amine, affords the enzyme additional stability when incubated overnight at 63<!--> <!-->°C in an aqueous state. For example, its catalytic efficiency is four orders of magnitude higher than that of both the free enzyme (a factor of 4.34<!--> <!-->×<!--> <!-->10<sup>4</sup>) and that of the EM Conjugate alone (a factor of 1.78<!--> <!-->×<!--> <!-->10<sup>4</sup>) after all are incubated overnight at 63<!--> <!-->°C. The presence of the hydrogel also caused the Michaelis constant to decrease by 1.38<!--> <!-->×<!--> <!-->10<sup>4</sup> relative to that of the EM Conjugate, reaching a value of 2.18<!--> <!-->×<!--> <!-->10<sup>−3</sup> <!-->M. Thus the hydrogel enables the AChE substrate binding site to retain a significant amount of its natural affinity for the substrate, after heating. This effect may occur via ion-pairing by the primary amines in the hydrogel polymer repeat unit, which are protonated and positively-charged at the assay pH. To the best of our knowledge, this simple method for enzyme thermal stabilization is novel and has not yet been investigated.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"134 ","pages":"Pages 61-69"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.09.007","citationCount":"2","resultStr":"{\"title\":\"A simple approach to a vastly improved acetylcholinesterase activity and stability at elevated temperatures using magnetic microbeads and poly(N-(3-aminopropyl methacrylamide)) hydrogel supports\",\"authors\":\"Lisa C. Shriver-Lake , Paul T. Charles , Andre A. Adams , Jake Fontana , Brett D. Martin\",\"doi\":\"10.1016/j.molcatb.2016.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thermal stabilization of enzymes is a critical factor in the development and reliability of enzyme-based processes and functional materials. Using a simple amine coupling approach for enzyme immobilization onto magnetic microbeads, followed by encasement of the beads in a hydrogel, we demonstrate that the thermal stability of the enzyme acetylcholinesterase can be increased dramatically. For example, when free and microbead-immobilized enzyme (“EM Conjugate”) are incubated overnight in a dry state at 63<!--> <!-->°C (140<!--> <!-->°F), the catalytic efficiency (k<sub>cat</sub>/K<sub>m</sub>) of the latter is higher than the former by six orders of magnitude (a factor of 2.16<!--> <!-->×<!--> <!-->10<sup>6</sup>). This effect arises mostly through a ∼29,700-fold decrease in K<sub>m</sub> experienced by the EM Conjugate, relative to that of the free enzyme. Encapsulation of the EM Conjugate in a hydrogel based on poly(N-(3-aminopropyl methacrylamide)), which contains a primary amine, affords the enzyme additional stability when incubated overnight at 63<!--> <!-->°C in an aqueous state. For example, its catalytic efficiency is four orders of magnitude higher than that of both the free enzyme (a factor of 4.34<!--> <!-->×<!--> <!-->10<sup>4</sup>) and that of the EM Conjugate alone (a factor of 1.78<!--> <!-->×<!--> <!-->10<sup>4</sup>) after all are incubated overnight at 63<!--> <!-->°C. The presence of the hydrogel also caused the Michaelis constant to decrease by 1.38<!--> <!-->×<!--> <!-->10<sup>4</sup> relative to that of the EM Conjugate, reaching a value of 2.18<!--> <!-->×<!--> <!-->10<sup>−3</sup> <!-->M. Thus the hydrogel enables the AChE substrate binding site to retain a significant amount of its natural affinity for the substrate, after heating. This effect may occur via ion-pairing by the primary amines in the hydrogel polymer repeat unit, which are protonated and positively-charged at the assay pH. To the best of our knowledge, this simple method for enzyme thermal stabilization is novel and has not yet been investigated.</p></div>\",\"PeriodicalId\":16416,\"journal\":{\"name\":\"Journal of Molecular Catalysis B-enzymatic\",\"volume\":\"134 \",\"pages\":\"Pages 61-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.09.007\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis B-enzymatic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381117716301710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716301710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
A simple approach to a vastly improved acetylcholinesterase activity and stability at elevated temperatures using magnetic microbeads and poly(N-(3-aminopropyl methacrylamide)) hydrogel supports
The thermal stabilization of enzymes is a critical factor in the development and reliability of enzyme-based processes and functional materials. Using a simple amine coupling approach for enzyme immobilization onto magnetic microbeads, followed by encasement of the beads in a hydrogel, we demonstrate that the thermal stability of the enzyme acetylcholinesterase can be increased dramatically. For example, when free and microbead-immobilized enzyme (“EM Conjugate”) are incubated overnight in a dry state at 63 °C (140 °F), the catalytic efficiency (kcat/Km) of the latter is higher than the former by six orders of magnitude (a factor of 2.16 × 106). This effect arises mostly through a ∼29,700-fold decrease in Km experienced by the EM Conjugate, relative to that of the free enzyme. Encapsulation of the EM Conjugate in a hydrogel based on poly(N-(3-aminopropyl methacrylamide)), which contains a primary amine, affords the enzyme additional stability when incubated overnight at 63 °C in an aqueous state. For example, its catalytic efficiency is four orders of magnitude higher than that of both the free enzyme (a factor of 4.34 × 104) and that of the EM Conjugate alone (a factor of 1.78 × 104) after all are incubated overnight at 63 °C. The presence of the hydrogel also caused the Michaelis constant to decrease by 1.38 × 104 relative to that of the EM Conjugate, reaching a value of 2.18 × 10−3 M. Thus the hydrogel enables the AChE substrate binding site to retain a significant amount of its natural affinity for the substrate, after heating. This effect may occur via ion-pairing by the primary amines in the hydrogel polymer repeat unit, which are protonated and positively-charged at the assay pH. To the best of our knowledge, this simple method for enzyme thermal stabilization is novel and has not yet been investigated.
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.