{"title":"基于低秩联合稀疏表示算法的人脸识别技术","authors":"Hongsheng Wang, Jingjing Cai","doi":"10.3233/jcm-226778","DOIUrl":null,"url":null,"abstract":"With the improvement of computer computing power and the development of artificial intelligence technology, face recognition technology has made a major breakthrough, and has been popularized and applied in all areas of life. However, different face structure and pose will affect the accuracy of face recognition. To overcome the problem, a low rank joint sparse representation algorithm for face recognition is proposed. The low rank features of images are extracted by structure independent and pairwise rank decomposition methods. The extracted low rank features of the first level image and the low rank features of the second level image are sparsely represented. Finally, the residual rate model is used to classify the images, and the final result of face recognition is obtained. The experimental results show that the proposed SRP algorithm has a recognition accuracy of more than 92% in two different face recognition tests. In the mixed multi face pose test, PRS algorithm performs best in the recognition of 1, 2, 3, 4, and 5 multi face pose types, with recognition rates of 95%, 94%, 93%, 91%, and 90% respectively. The algorithm also has excellent recognition performance and robustness in identifying harsh environments such as fuzzy environments. The research content focuses on complex face recognition scenes, innovatively uses low rank to complete the extraction of face feature data, and combines sparse selection of classification features to improve the overall effect of face recognition. It has important reference value for improving the overall security and recognition rate of face recognition.","PeriodicalId":14668,"journal":{"name":"J. Comput. Methods Sci. Eng.","volume":"1 1","pages":"2045-2058"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face recognition technology based on low-rank joint sparse representation algorithm\",\"authors\":\"Hongsheng Wang, Jingjing Cai\",\"doi\":\"10.3233/jcm-226778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the improvement of computer computing power and the development of artificial intelligence technology, face recognition technology has made a major breakthrough, and has been popularized and applied in all areas of life. However, different face structure and pose will affect the accuracy of face recognition. To overcome the problem, a low rank joint sparse representation algorithm for face recognition is proposed. The low rank features of images are extracted by structure independent and pairwise rank decomposition methods. The extracted low rank features of the first level image and the low rank features of the second level image are sparsely represented. Finally, the residual rate model is used to classify the images, and the final result of face recognition is obtained. The experimental results show that the proposed SRP algorithm has a recognition accuracy of more than 92% in two different face recognition tests. In the mixed multi face pose test, PRS algorithm performs best in the recognition of 1, 2, 3, 4, and 5 multi face pose types, with recognition rates of 95%, 94%, 93%, 91%, and 90% respectively. The algorithm also has excellent recognition performance and robustness in identifying harsh environments such as fuzzy environments. The research content focuses on complex face recognition scenes, innovatively uses low rank to complete the extraction of face feature data, and combines sparse selection of classification features to improve the overall effect of face recognition. It has important reference value for improving the overall security and recognition rate of face recognition.\",\"PeriodicalId\":14668,\"journal\":{\"name\":\"J. Comput. Methods Sci. Eng.\",\"volume\":\"1 1\",\"pages\":\"2045-2058\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Methods Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcm-226778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Methods Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Face recognition technology based on low-rank joint sparse representation algorithm
With the improvement of computer computing power and the development of artificial intelligence technology, face recognition technology has made a major breakthrough, and has been popularized and applied in all areas of life. However, different face structure and pose will affect the accuracy of face recognition. To overcome the problem, a low rank joint sparse representation algorithm for face recognition is proposed. The low rank features of images are extracted by structure independent and pairwise rank decomposition methods. The extracted low rank features of the first level image and the low rank features of the second level image are sparsely represented. Finally, the residual rate model is used to classify the images, and the final result of face recognition is obtained. The experimental results show that the proposed SRP algorithm has a recognition accuracy of more than 92% in two different face recognition tests. In the mixed multi face pose test, PRS algorithm performs best in the recognition of 1, 2, 3, 4, and 5 multi face pose types, with recognition rates of 95%, 94%, 93%, 91%, and 90% respectively. The algorithm also has excellent recognition performance and robustness in identifying harsh environments such as fuzzy environments. The research content focuses on complex face recognition scenes, innovatively uses low rank to complete the extraction of face feature data, and combines sparse selection of classification features to improve the overall effect of face recognition. It has important reference value for improving the overall security and recognition rate of face recognition.