Thanakorn Phumkuea, Phurich Nilvisut, T. Wongsirichot, Kasikrit Damkliang
{"title":"一种利用具有选择性最优特征的决策树模型在显微镜图像中精确检测疟疾寄生虫的计算机辅助诊断新方法","authors":"Thanakorn Phumkuea, Phurich Nilvisut, T. Wongsirichot, Kasikrit Damkliang","doi":"10.4015/s1016237223500047","DOIUrl":null,"url":null,"abstract":"Malaria is a life-threatening mosquito-borne disease. Recently, the number of malaria cases has increased worldwide, threatening vulnerable populations. Malaria is responsible for a high rate of morbidity and mortality in people all around the world. Each year, many people, die from this disease, according to the World Health Organization (WHO). Thick and thin blood smears are used to determine parasite habitation and computer-aided diagnosis (CADx) techniques using machine learning (ML) are being used to assist. CADx reduces traditional diagnosis time, lessens socio-economic impact, and improves quality of life. This study develops a simplified model with selective features to reduce processing power and further shorten diagnostic time, which is important to resource-constrained areas. To improve overall classification results, we use a decision tree (DT)-based approach with image pre-processing called optimal features to identify optimal features. Various feature selection and extraction techniques are used, including information gain (IG). Our proposed model is compared to a benchmark state-of-art classification model. For an unseen dataset, our proposed model achieves accuracy, precision, recall, F-score, and processing time of 0.956, 0.949, 0.964, 0.956, and 9.877 s, respectively. Furthermore, our proposed model’s training time is less than those of the state-of-the-art classification model, while the performance metrics are comparable.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"58 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NEW COMPUTER-AIDED DIAGNOSIS OF PRECISE MALARIA PARASITE DETECTION IN MICROSCOPIC IMAGES USING A DECISION TREE MODEL WITH SELECTIVE OPTIMAL FEATURES\",\"authors\":\"Thanakorn Phumkuea, Phurich Nilvisut, T. Wongsirichot, Kasikrit Damkliang\",\"doi\":\"10.4015/s1016237223500047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malaria is a life-threatening mosquito-borne disease. Recently, the number of malaria cases has increased worldwide, threatening vulnerable populations. Malaria is responsible for a high rate of morbidity and mortality in people all around the world. Each year, many people, die from this disease, according to the World Health Organization (WHO). Thick and thin blood smears are used to determine parasite habitation and computer-aided diagnosis (CADx) techniques using machine learning (ML) are being used to assist. CADx reduces traditional diagnosis time, lessens socio-economic impact, and improves quality of life. This study develops a simplified model with selective features to reduce processing power and further shorten diagnostic time, which is important to resource-constrained areas. To improve overall classification results, we use a decision tree (DT)-based approach with image pre-processing called optimal features to identify optimal features. Various feature selection and extraction techniques are used, including information gain (IG). Our proposed model is compared to a benchmark state-of-art classification model. For an unseen dataset, our proposed model achieves accuracy, precision, recall, F-score, and processing time of 0.956, 0.949, 0.964, 0.956, and 9.877 s, respectively. Furthermore, our proposed model’s training time is less than those of the state-of-the-art classification model, while the performance metrics are comparable.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s1016237223500047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A NEW COMPUTER-AIDED DIAGNOSIS OF PRECISE MALARIA PARASITE DETECTION IN MICROSCOPIC IMAGES USING A DECISION TREE MODEL WITH SELECTIVE OPTIMAL FEATURES
Malaria is a life-threatening mosquito-borne disease. Recently, the number of malaria cases has increased worldwide, threatening vulnerable populations. Malaria is responsible for a high rate of morbidity and mortality in people all around the world. Each year, many people, die from this disease, according to the World Health Organization (WHO). Thick and thin blood smears are used to determine parasite habitation and computer-aided diagnosis (CADx) techniques using machine learning (ML) are being used to assist. CADx reduces traditional diagnosis time, lessens socio-economic impact, and improves quality of life. This study develops a simplified model with selective features to reduce processing power and further shorten diagnostic time, which is important to resource-constrained areas. To improve overall classification results, we use a decision tree (DT)-based approach with image pre-processing called optimal features to identify optimal features. Various feature selection and extraction techniques are used, including information gain (IG). Our proposed model is compared to a benchmark state-of-art classification model. For an unseen dataset, our proposed model achieves accuracy, precision, recall, F-score, and processing time of 0.956, 0.949, 0.964, 0.956, and 9.877 s, respectively. Furthermore, our proposed model’s training time is less than those of the state-of-the-art classification model, while the performance metrics are comparable.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.