Zhaoli Li, Y. Zuo, X. Zeng, Zhaohui Wu, Xiao-dong Wang, Xiao Wang, J. Mu, B. Hu
{"title":"快速扩展等离子体光栅产生超强少周期红外激光","authors":"Zhaoli Li, Y. Zuo, X. Zeng, Zhaohui Wu, Xiao-dong Wang, Xiao Wang, J. Mu, B. Hu","doi":"10.1063/5.0119868","DOIUrl":null,"url":null,"abstract":"Ultraintense short-period infrared laser pulses play an important role in frontier scientific research, but their power is quite low when generated using current technology. This paper demonstrates a scheme for generating an ultraintense few-cycle infrared pulse by directly compressing a long infrared pulse. In this scheme, an infrared picosecond-to-nanosecond laser pulse counterpropagates with a rapidly extending plasma grating that is created by ionizing an undulated gas by a short laser pulse, and the infrared laser pulse is reflected by the rapidly extending plasma grating. Because of the high expansion velocity of the latter, the infrared laser pulse is compressed in the reflection process. One- and two-dimensional particle-in-cell simulations show that by this method, a pulse with a duration of tens of picoseconds in the mid- to far-infrared range can be compressed to a few cycles with an efficiency exceeding 60%, thereby making ultraintense few-cycle infrared pulses possible.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ultraintense few-cycle infrared laser generation by fast-extending plasma grating\",\"authors\":\"Zhaoli Li, Y. Zuo, X. Zeng, Zhaohui Wu, Xiao-dong Wang, Xiao Wang, J. Mu, B. Hu\",\"doi\":\"10.1063/5.0119868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultraintense short-period infrared laser pulses play an important role in frontier scientific research, but their power is quite low when generated using current technology. This paper demonstrates a scheme for generating an ultraintense few-cycle infrared pulse by directly compressing a long infrared pulse. In this scheme, an infrared picosecond-to-nanosecond laser pulse counterpropagates with a rapidly extending plasma grating that is created by ionizing an undulated gas by a short laser pulse, and the infrared laser pulse is reflected by the rapidly extending plasma grating. Because of the high expansion velocity of the latter, the infrared laser pulse is compressed in the reflection process. One- and two-dimensional particle-in-cell simulations show that by this method, a pulse with a duration of tens of picoseconds in the mid- to far-infrared range can be compressed to a few cycles with an efficiency exceeding 60%, thereby making ultraintense few-cycle infrared pulses possible.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0119868\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0119868","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultraintense few-cycle infrared laser generation by fast-extending plasma grating
Ultraintense short-period infrared laser pulses play an important role in frontier scientific research, but their power is quite low when generated using current technology. This paper demonstrates a scheme for generating an ultraintense few-cycle infrared pulse by directly compressing a long infrared pulse. In this scheme, an infrared picosecond-to-nanosecond laser pulse counterpropagates with a rapidly extending plasma grating that is created by ionizing an undulated gas by a short laser pulse, and the infrared laser pulse is reflected by the rapidly extending plasma grating. Because of the high expansion velocity of the latter, the infrared laser pulse is compressed in the reflection process. One- and two-dimensional particle-in-cell simulations show that by this method, a pulse with a duration of tens of picoseconds in the mid- to far-infrared range can be compressed to a few cycles with an efficiency exceeding 60%, thereby making ultraintense few-cycle infrared pulses possible.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.