夹在非均匀半无限介质和非均匀弹性半空间之间的非均匀正交各向异性层中sh波的色散

R. M. Prasad, S. Kundu
{"title":"夹在非均匀半无限介质和非均匀弹性半空间之间的非均匀正交各向异性层中sh波的色散","authors":"R. M. Prasad, S. Kundu","doi":"10.22034/JSM.2021.1876032.1479","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigates the existence of the dispersion of SH-wave in a heterogeneous orthotropic layer lying over a heterogeneous elastic half-space and underlying an inhomogeneous semi-infinite medium. Hyperbolic variation in upper semi-infinite associated with directional rigidities and density has been considered while linear variation in the intermediate layer associated with initial stress, density, shear moduli and lower half-space associated with rigidity and density has been considered. The dispersion equation of SH-wave has been obtained in a closed form by using variable separation method. The effects of inhomogeneities of the assumed media are illustrated by figures using MATLAB programming. The Earth's composition is heterogeneous that incorporates extremely hard layers. The propagation of SH-wave across crustal layer of the Earth very much depends upon heterogeneity and orthotropic properties. In fact, the observation reveals that the phase velocity of SH-wave is directly proportionate to inhomogeneity parameter, orthotropic parameter and heterogeneity parameter. That means as inhomogeneity parameter and heterogeneity orthotropic parameter increases, the phase velocity of SH-wave increases proportionately. Moreover, the obtained dispersion equation of SH-wave coincides with the classical result of Love wave as initial stress, inhomogeneities, and the upper semi-infinite medium is neglected. This analysis may be helpful to expound the nature of the dispersion of seismic waves in elastic media.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"72 1","pages":"413-426"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dispersion of SH-Wave in a Heterogeneous Orthotropic Layer Sandwiched Between an Inhomogeneous Semi-Infinite Medium and a Heterogeneous Elastic Half-Space\",\"authors\":\"R. M. Prasad, S. Kundu\",\"doi\":\"10.22034/JSM.2021.1876032.1479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to investigates the existence of the dispersion of SH-wave in a heterogeneous orthotropic layer lying over a heterogeneous elastic half-space and underlying an inhomogeneous semi-infinite medium. Hyperbolic variation in upper semi-infinite associated with directional rigidities and density has been considered while linear variation in the intermediate layer associated with initial stress, density, shear moduli and lower half-space associated with rigidity and density has been considered. The dispersion equation of SH-wave has been obtained in a closed form by using variable separation method. The effects of inhomogeneities of the assumed media are illustrated by figures using MATLAB programming. The Earth's composition is heterogeneous that incorporates extremely hard layers. The propagation of SH-wave across crustal layer of the Earth very much depends upon heterogeneity and orthotropic properties. In fact, the observation reveals that the phase velocity of SH-wave is directly proportionate to inhomogeneity parameter, orthotropic parameter and heterogeneity parameter. That means as inhomogeneity parameter and heterogeneity orthotropic parameter increases, the phase velocity of SH-wave increases proportionately. Moreover, the obtained dispersion equation of SH-wave coincides with the classical result of Love wave as initial stress, inhomogeneities, and the upper semi-infinite medium is neglected. This analysis may be helpful to expound the nature of the dispersion of seismic waves in elastic media.\",\"PeriodicalId\":17126,\"journal\":{\"name\":\"Journal of Solid Mechanics and Materials Engineering\",\"volume\":\"72 1\",\"pages\":\"413-426\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid Mechanics and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/JSM.2021.1876032.1479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2021.1876032.1479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是研究非均匀半无限介质下非均匀弹性半空间上的非均匀正交各向异性层中sh波色散的存在性。考虑了与方向刚度和密度相关的上半无限层的双曲变化,考虑了与初始应力、密度、剪切模量相关的中间层和与刚度和密度相关的下半空间的线性变化。采用变量分离法,得到了sh波色散方程的封闭形式。利用MATLAB编程用图形说明了介质非均匀性的影响。地球的组成是不均匀的,包含了极其坚硬的层。sh波在地球地壳层上的传播很大程度上取决于非均质性和正交各向异性。实际上,观测结果表明,sh波的相速度与非均匀性参数、正交异性参数和非均匀性参数成正比。即随着非均匀性参数和非均质正交异性参数的增大,sh波相速度成比例增大。在初始应力、非均质性和忽略上半无限介质的情况下,得到的sh波色散方程与经典Love波的结果一致。这一分析有助于阐明地震波在弹性介质中的频散性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dispersion of SH-Wave in a Heterogeneous Orthotropic Layer Sandwiched Between an Inhomogeneous Semi-Infinite Medium and a Heterogeneous Elastic Half-Space
The aim of this paper is to investigates the existence of the dispersion of SH-wave in a heterogeneous orthotropic layer lying over a heterogeneous elastic half-space and underlying an inhomogeneous semi-infinite medium. Hyperbolic variation in upper semi-infinite associated with directional rigidities and density has been considered while linear variation in the intermediate layer associated with initial stress, density, shear moduli and lower half-space associated with rigidity and density has been considered. The dispersion equation of SH-wave has been obtained in a closed form by using variable separation method. The effects of inhomogeneities of the assumed media are illustrated by figures using MATLAB programming. The Earth's composition is heterogeneous that incorporates extremely hard layers. The propagation of SH-wave across crustal layer of the Earth very much depends upon heterogeneity and orthotropic properties. In fact, the observation reveals that the phase velocity of SH-wave is directly proportionate to inhomogeneity parameter, orthotropic parameter and heterogeneity parameter. That means as inhomogeneity parameter and heterogeneity orthotropic parameter increases, the phase velocity of SH-wave increases proportionately. Moreover, the obtained dispersion equation of SH-wave coincides with the classical result of Love wave as initial stress, inhomogeneities, and the upper semi-infinite medium is neglected. This analysis may be helpful to expound the nature of the dispersion of seismic waves in elastic media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dispersion of SH-Wave in a Heterogeneous Orthotropic Layer Sandwiched Between an Inhomogeneous Semi-Infinite Medium and a Heterogeneous Elastic Half-Space Large Deformation Hermitian Finite Element Coupled Thermoelasticity Analysis of Wave Propagation and Reflection in a Finite Domain Free Torsional Vibration Analysis of Hollow and Solid Non-Uniform Rotating Shafts Using Distributed and Lumped Modeling Technique Multi-Objective Optimization of Shot-Peening Parameters Using Modified Taguchi Technique Study on Vibration Band Gap Characteristics of a Branched Shape Periodic Structure Using the GDQR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1