JZTX-V对HEK293T中野生型Kv4.3表达的影响及与JZTX-V相互作用的Kv4.3电压感应区分子决定因素

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Channels Pub Date : 2022-04-04 DOI:10.1080/19336950.2022.2053420
Xu Dehong, Wu Wenmei, Hong Siqin, Zeng Peng, Wang Xianchun, Zeng Xiongzhi
{"title":"JZTX-V对HEK293T中野生型Kv4.3表达的影响及与JZTX-V相互作用的Kv4.3电压感应区分子决定因素","authors":"Xu Dehong, Wu Wenmei, Hong Siqin, Zeng Peng, Wang Xianchun, Zeng Xiongzhi","doi":"10.1080/19336950.2022.2053420","DOIUrl":null,"url":null,"abstract":"ABSTRACT JZTX-V is a toxin isolated from the venom of the Chinese spider Chilobrachys jingzhao. Previous studies had shown that JZTX-V could inhibit the transient outward potassium current of Kv4.2 and Kv4.3 expressed in Xenopus oocytes but had no effects on Kv1.2–1.4. However, the underlying action mechanism of JZTX-V on Kv4.3 remains unclear. In our study, JZTX-V could inhibit not only transient outward potassium currents evoked in small-sized DRG neurons but also Kv4.3-encoded currents expressed in HEK293T cells in the concentration and voltage dependence. The half maximal inhibitory concentration of JZTX-V on Kv4.3 was 9.6 ± 1.2 nM. In addition, the time course for JZTX-V inhibition and release of inhibition after washout were 15.8 ± 1.54 s and 58.8 ± 4.35 s. Electrophysiological assays indicated that 25 nM JZTX-V could shift significantly the voltage dependence of steady-state activation and steady-state inactivation to depolarization. Meanwhile, 25 nM JZTX-V decreased markedly the time constant of activation and inactivation but had no effect on the time constant of recovery from inactivation. To study the molecular determinants of Kv4.3, we performed alanine scanning on a conserved motif of Kv4.3 and assayed the affinity between mutants and JZTX-V. The results not only showed that I273, L275, V283, and F287 were molecular determinants in the conserved motif of Kv4.3 for interacting with JZTX-V but also speculated the underlying action mechanism that the hydrophobic interaction and steric effects played key roles in the binding of JZTX-V with Kv4.3. In summary, our studies have laid a scientific theoretical foundation for further research on the interaction mechanism between JZTX-V and Kv4.3.","PeriodicalId":9750,"journal":{"name":"Channels","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of JZTX-V on the wild type Kv4.3 Expressed in HEK293T and Molecular Determinants in the Voltage-sensing Domains of Kv4.3 Interacting with JZTX-V\",\"authors\":\"Xu Dehong, Wu Wenmei, Hong Siqin, Zeng Peng, Wang Xianchun, Zeng Xiongzhi\",\"doi\":\"10.1080/19336950.2022.2053420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT JZTX-V is a toxin isolated from the venom of the Chinese spider Chilobrachys jingzhao. Previous studies had shown that JZTX-V could inhibit the transient outward potassium current of Kv4.2 and Kv4.3 expressed in Xenopus oocytes but had no effects on Kv1.2–1.4. However, the underlying action mechanism of JZTX-V on Kv4.3 remains unclear. In our study, JZTX-V could inhibit not only transient outward potassium currents evoked in small-sized DRG neurons but also Kv4.3-encoded currents expressed in HEK293T cells in the concentration and voltage dependence. The half maximal inhibitory concentration of JZTX-V on Kv4.3 was 9.6 ± 1.2 nM. In addition, the time course for JZTX-V inhibition and release of inhibition after washout were 15.8 ± 1.54 s and 58.8 ± 4.35 s. Electrophysiological assays indicated that 25 nM JZTX-V could shift significantly the voltage dependence of steady-state activation and steady-state inactivation to depolarization. Meanwhile, 25 nM JZTX-V decreased markedly the time constant of activation and inactivation but had no effect on the time constant of recovery from inactivation. To study the molecular determinants of Kv4.3, we performed alanine scanning on a conserved motif of Kv4.3 and assayed the affinity between mutants and JZTX-V. The results not only showed that I273, L275, V283, and F287 were molecular determinants in the conserved motif of Kv4.3 for interacting with JZTX-V but also speculated the underlying action mechanism that the hydrophobic interaction and steric effects played key roles in the binding of JZTX-V with Kv4.3. In summary, our studies have laid a scientific theoretical foundation for further research on the interaction mechanism between JZTX-V and Kv4.3.\",\"PeriodicalId\":9750,\"journal\":{\"name\":\"Channels\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Channels\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336950.2022.2053420\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Channels","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336950.2022.2053420","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

摘要JZTX-V是一种从中国蜘蛛京照毒中分离得到的毒素。已有研究表明,JZTX-V能抑制爪蟾卵母细胞中表达的瞬时外向钾电流Kv4.2和Kv4.3,但对Kv1.2-1.4无影响。然而,JZTX-V对Kv4.3的作用机制尚不清楚。在我们的研究中,JZTX-V不仅可以抑制小尺寸DRG神经元中诱发的瞬时外向钾电流,还可以抑制HEK293T细胞中表达的kv4.3编码电流,并呈浓度和电压依赖性。JZTX-V对Kv4.3的半最大抑制浓度为9.6±1.2 nM。JZTX-V洗脱后的抑制时间和释放时间分别为15.8±1.54 s和58.8±4.35 s。电生理实验表明,25 nM JZTX-V能显著改变稳态激活和稳态失活对去极化的电压依赖性。同时,25 nM JZTX-V可显著降低细胞的活化和失活时间常数,但对恢复失活时间常数无影响。为了研究Kv4.3的分子决定因素,我们对Kv4.3的一个保守基序进行了丙氨酸扫描,并分析了突变体与JZTX-V之间的亲和力。结果不仅表明I273、L275、V283和F287是Kv4.3保守基序中与JZTX-V相互作用的分子决定因素,而且推测了JZTX-V与Kv4.3结合的潜在作用机制,即疏水相互作用和位阻效应在JZTX-V与Kv4.3的结合中起关键作用。综上所述,我们的研究为进一步研究JZTX-V与Kv4.3的相互作用机制奠定了科学的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of JZTX-V on the wild type Kv4.3 Expressed in HEK293T and Molecular Determinants in the Voltage-sensing Domains of Kv4.3 Interacting with JZTX-V
ABSTRACT JZTX-V is a toxin isolated from the venom of the Chinese spider Chilobrachys jingzhao. Previous studies had shown that JZTX-V could inhibit the transient outward potassium current of Kv4.2 and Kv4.3 expressed in Xenopus oocytes but had no effects on Kv1.2–1.4. However, the underlying action mechanism of JZTX-V on Kv4.3 remains unclear. In our study, JZTX-V could inhibit not only transient outward potassium currents evoked in small-sized DRG neurons but also Kv4.3-encoded currents expressed in HEK293T cells in the concentration and voltage dependence. The half maximal inhibitory concentration of JZTX-V on Kv4.3 was 9.6 ± 1.2 nM. In addition, the time course for JZTX-V inhibition and release of inhibition after washout were 15.8 ± 1.54 s and 58.8 ± 4.35 s. Electrophysiological assays indicated that 25 nM JZTX-V could shift significantly the voltage dependence of steady-state activation and steady-state inactivation to depolarization. Meanwhile, 25 nM JZTX-V decreased markedly the time constant of activation and inactivation but had no effect on the time constant of recovery from inactivation. To study the molecular determinants of Kv4.3, we performed alanine scanning on a conserved motif of Kv4.3 and assayed the affinity between mutants and JZTX-V. The results not only showed that I273, L275, V283, and F287 were molecular determinants in the conserved motif of Kv4.3 for interacting with JZTX-V but also speculated the underlying action mechanism that the hydrophobic interaction and steric effects played key roles in the binding of JZTX-V with Kv4.3. In summary, our studies have laid a scientific theoretical foundation for further research on the interaction mechanism between JZTX-V and Kv4.3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Channels
Channels 生物-生化与分子生物学
CiteScore
5.90
自引率
0.00%
发文量
21
审稿时长
6-12 weeks
期刊介绍: Channels is an open access journal for all aspects of ion channel research. The journal publishes high quality papers that shed new light on ion channel and ion transporter/exchanger function, structure, biophysics, pharmacology, and regulation in health and disease. Channels welcomes interdisciplinary approaches that address ion channel physiology in areas such as neuroscience, cardiovascular sciences, cancer research, endocrinology, and gastroenterology. Our aim is to foster communication among the ion channel and transporter communities and facilitate the advancement of the field.
期刊最新文献
Piezo1 channel: A global bibliometric analysis from 2010 to 2024. The activation thresholds and inactivation kinetics of poking-evoked PIEZO1 and PIEZO2 currents are sensitive to subtle variations in mechanical stimulation parameters. Non-ionotropic voltage-gated calcium channel signaling Novel protocol for multiple-dose oral administration of the L-type Ca2+ channel blocker isradipine in mice: A dose-finding pharmacokinetic study Structural biology of voltage-gated calcium channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1