{"title":"纳米结构二氧化锰形态与物理性质的关系","authors":"H. Nguyen, H. Tran","doi":"10.3762/bxiv.2020.115.v1","DOIUrl":null,"url":null,"abstract":"In this study, crednerite CuMnO2 nanostructures were prepared using a hydrothermal method at 100 °C with different amounts of NaOH mineralizator. Obtained nanostructured crednerite CuMnO2 with monoclinic structure (space group C2/m) exhibits two kinds of morphologies: nanobelts of the length of 1 - 1.5 µm and thickness of 15 - 25 nm, and nanoplatets being of 50 - 70 nm in diameter. Comparative studies of the preprepared samples reveal an intimate relationship between morphological and physical properties in nanostructured CuMnO2. A low NaOH concentration favours elongated crystal growth along the c-axis, creating nanobelt-shaped morphology. On the other hand, a strong base solution promotes the formation of nanoplates. Unique morphologies of nanostructured CuMnO2 affect distinct spectroscopic and magnetic properties. The nanobelt-shaped sample is characterized by the Raman active A1g mode at 637 cm-1 and a modified Curie-Weiss bahaviour. This phase exhibits two successive magnetic phase transitions: ferromagnetically at 9.2 K and antiferromagnetically at 42 K. Conversely, the nanoplate-shaped sample behaves typically as those reported in the literature, namely, the Raman active A1g mode at 688 cm-1 and low-dimensional magnetism with antiferromagnetic ordering below 62 K. The variation in the magnetic properties is presumably associated to the partial oxidation of Cu1+ and Mn2+ in the nanoplate-shaped sample compared to the divalent state of Cu2+ and trivalent Mn3+ ions in the nanobelt-shaped one.","PeriodicalId":20078,"journal":{"name":"Physica E: Low-dimensional Systems and Nanostructures","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relationship between morphological and physical properties in nanostructured CuMnO2\",\"authors\":\"H. Nguyen, H. Tran\",\"doi\":\"10.3762/bxiv.2020.115.v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, crednerite CuMnO2 nanostructures were prepared using a hydrothermal method at 100 °C with different amounts of NaOH mineralizator. Obtained nanostructured crednerite CuMnO2 with monoclinic structure (space group C2/m) exhibits two kinds of morphologies: nanobelts of the length of 1 - 1.5 µm and thickness of 15 - 25 nm, and nanoplatets being of 50 - 70 nm in diameter. Comparative studies of the preprepared samples reveal an intimate relationship between morphological and physical properties in nanostructured CuMnO2. A low NaOH concentration favours elongated crystal growth along the c-axis, creating nanobelt-shaped morphology. On the other hand, a strong base solution promotes the formation of nanoplates. Unique morphologies of nanostructured CuMnO2 affect distinct spectroscopic and magnetic properties. The nanobelt-shaped sample is characterized by the Raman active A1g mode at 637 cm-1 and a modified Curie-Weiss bahaviour. This phase exhibits two successive magnetic phase transitions: ferromagnetically at 9.2 K and antiferromagnetically at 42 K. Conversely, the nanoplate-shaped sample behaves typically as those reported in the literature, namely, the Raman active A1g mode at 688 cm-1 and low-dimensional magnetism with antiferromagnetic ordering below 62 K. The variation in the magnetic properties is presumably associated to the partial oxidation of Cu1+ and Mn2+ in the nanoplate-shaped sample compared to the divalent state of Cu2+ and trivalent Mn3+ ions in the nanobelt-shaped one.\",\"PeriodicalId\":20078,\"journal\":{\"name\":\"Physica E: Low-dimensional Systems and Nanostructures\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E: Low-dimensional Systems and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3762/bxiv.2020.115.v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E: Low-dimensional Systems and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3762/bxiv.2020.115.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relationship between morphological and physical properties in nanostructured CuMnO2
In this study, crednerite CuMnO2 nanostructures were prepared using a hydrothermal method at 100 °C with different amounts of NaOH mineralizator. Obtained nanostructured crednerite CuMnO2 with monoclinic structure (space group C2/m) exhibits two kinds of morphologies: nanobelts of the length of 1 - 1.5 µm and thickness of 15 - 25 nm, and nanoplatets being of 50 - 70 nm in diameter. Comparative studies of the preprepared samples reveal an intimate relationship between morphological and physical properties in nanostructured CuMnO2. A low NaOH concentration favours elongated crystal growth along the c-axis, creating nanobelt-shaped morphology. On the other hand, a strong base solution promotes the formation of nanoplates. Unique morphologies of nanostructured CuMnO2 affect distinct spectroscopic and magnetic properties. The nanobelt-shaped sample is characterized by the Raman active A1g mode at 637 cm-1 and a modified Curie-Weiss bahaviour. This phase exhibits two successive magnetic phase transitions: ferromagnetically at 9.2 K and antiferromagnetically at 42 K. Conversely, the nanoplate-shaped sample behaves typically as those reported in the literature, namely, the Raman active A1g mode at 688 cm-1 and low-dimensional magnetism with antiferromagnetic ordering below 62 K. The variation in the magnetic properties is presumably associated to the partial oxidation of Cu1+ and Mn2+ in the nanoplate-shaped sample compared to the divalent state of Cu2+ and trivalent Mn3+ ions in the nanobelt-shaped one.