{"title":"比较短内存图以监控单个服务器队列的流量强度","authors":"Marta Santos, M. Morais, A. Pacheco","doi":"10.1515/eqc-2017-0030","DOIUrl":null,"url":null,"abstract":"Abstract This paper describes the application of simple quality control charts to monitor the traffic intensity of single server queues, a still uncommon use of what is arguably the most successful statistical process control tool. These charts play a vital role in the detection of increases in the traffic intensity of single server queueing systems such as the M / G / 1 {M/G/1} , G I / M / 1 {GI/M/1} and G I / G / 1 {GI/G/1} queues. The corresponding control statistics refer solely to a customer-arrival/departure epoch as opposed to several such epochs, thus they are termed short-memory charts. We compare the RL performance of those charts under three out-of-control scenarios referring to increases in the traffic intensity due to: a decrease in the service rate while the arrival rate remains unchanged; an increase in the arrival rate while the service rate is constant; an increase in the arrival rate accompanied by a proportional decrease in the service rate. These comparisons refer to a broad set of interarrival and service time distributions, namely exponential, Erlang, hyper-exponential, and hypo-exponential. Extensive results and striking illustrations are provided to give the quality control practitioner an idea of how these charts perform in practice.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"67 1","pages":"1 - 21"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparing Short-Memory Charts to Monitor the Traffic Intensity of Single Server Queues\",\"authors\":\"Marta Santos, M. Morais, A. Pacheco\",\"doi\":\"10.1515/eqc-2017-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper describes the application of simple quality control charts to monitor the traffic intensity of single server queues, a still uncommon use of what is arguably the most successful statistical process control tool. These charts play a vital role in the detection of increases in the traffic intensity of single server queueing systems such as the M / G / 1 {M/G/1} , G I / M / 1 {GI/M/1} and G I / G / 1 {GI/G/1} queues. The corresponding control statistics refer solely to a customer-arrival/departure epoch as opposed to several such epochs, thus they are termed short-memory charts. We compare the RL performance of those charts under three out-of-control scenarios referring to increases in the traffic intensity due to: a decrease in the service rate while the arrival rate remains unchanged; an increase in the arrival rate while the service rate is constant; an increase in the arrival rate accompanied by a proportional decrease in the service rate. These comparisons refer to a broad set of interarrival and service time distributions, namely exponential, Erlang, hyper-exponential, and hypo-exponential. Extensive results and striking illustrations are provided to give the quality control practitioner an idea of how these charts perform in practice.\",\"PeriodicalId\":37499,\"journal\":{\"name\":\"Stochastics and Quality Control\",\"volume\":\"67 1\",\"pages\":\"1 - 21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2017-0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2017-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Comparing Short-Memory Charts to Monitor the Traffic Intensity of Single Server Queues
Abstract This paper describes the application of simple quality control charts to monitor the traffic intensity of single server queues, a still uncommon use of what is arguably the most successful statistical process control tool. These charts play a vital role in the detection of increases in the traffic intensity of single server queueing systems such as the M / G / 1 {M/G/1} , G I / M / 1 {GI/M/1} and G I / G / 1 {GI/G/1} queues. The corresponding control statistics refer solely to a customer-arrival/departure epoch as opposed to several such epochs, thus they are termed short-memory charts. We compare the RL performance of those charts under three out-of-control scenarios referring to increases in the traffic intensity due to: a decrease in the service rate while the arrival rate remains unchanged; an increase in the arrival rate while the service rate is constant; an increase in the arrival rate accompanied by a proportional decrease in the service rate. These comparisons refer to a broad set of interarrival and service time distributions, namely exponential, Erlang, hyper-exponential, and hypo-exponential. Extensive results and striking illustrations are provided to give the quality control practitioner an idea of how these charts perform in practice.