S. Samanta, D. Gaad, E. Cabet, A. Lilienbaum, Ajay Singh, D. K. Aswal, M. Chehimi
{"title":"柔性,生物相容性PET片:真核细胞附着,增殖和分化的平台","authors":"S. Samanta, D. Gaad, E. Cabet, A. Lilienbaum, Ajay Singh, D. K. Aswal, M. Chehimi","doi":"10.20944/preprints202111.0294.v1","DOIUrl":null,"url":null,"abstract":"Transparent, flexible, biaxially oriented polyethylene terephthalate (PET) sheets were modified by bioactive polymer-fibronectin top layers for the attachment of cells and growth of muscle fibers. Towards this end, PET sheets were grafted with 4-(dimethylamino)phenyl (DMA) groups from the in situ generated corresponding diazonium compound. The arylated sheets served as macro-hydrogen donors for benzophenone and the growth of poly(2-hydroxy ethyl methacrylate) (PHEMA) top layer by surface-confined free radical photopolymerization. The PET-PHEMA sheets were further grafted with fibronectin (FBN) through the 1,1-carbonyldiimidazole coupling procedures. The bioactive PET-PHEMA-I-FBN was then employed as a platform for the attachment, proliferation and differentiation of eukaryotic cells which after a few days gave remarkable muscle fibers, of ~120 µm length and ~45 µm thickness. We demonstrate that PET-PHEMA yields a fast growth of cells followed by muscle fibers of excellent levels of differentiation compared to pristine PET or standard microscope glass slides. The positive effect is exacerbated by crosslinking PHEMA chains with ethylene glycol dimethacrylate at initial HEMA/EGDMA concentration ratio = 9/1. This works conclusively shows that in situ generated diazonium salts provide aryl layers for the efficient UV-induced grafting of biocompatible coating that beneficially serve as platform for cell attachment and growth of muscle fibers. Beyond this work, diazonium coupling agents constitute the corner stone of next generation processes for building flexible platforms for cell adhesion and uses thereof.","PeriodicalId":22129,"journal":{"name":"Surfaces","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flexible, Biocompatible PET Sheets: a Platform for Attachment, Proliferation and Differentiation of Eukaryotic Cells\",\"authors\":\"S. Samanta, D. Gaad, E. Cabet, A. Lilienbaum, Ajay Singh, D. K. Aswal, M. Chehimi\",\"doi\":\"10.20944/preprints202111.0294.v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transparent, flexible, biaxially oriented polyethylene terephthalate (PET) sheets were modified by bioactive polymer-fibronectin top layers for the attachment of cells and growth of muscle fibers. Towards this end, PET sheets were grafted with 4-(dimethylamino)phenyl (DMA) groups from the in situ generated corresponding diazonium compound. The arylated sheets served as macro-hydrogen donors for benzophenone and the growth of poly(2-hydroxy ethyl methacrylate) (PHEMA) top layer by surface-confined free radical photopolymerization. The PET-PHEMA sheets were further grafted with fibronectin (FBN) through the 1,1-carbonyldiimidazole coupling procedures. The bioactive PET-PHEMA-I-FBN was then employed as a platform for the attachment, proliferation and differentiation of eukaryotic cells which after a few days gave remarkable muscle fibers, of ~120 µm length and ~45 µm thickness. We demonstrate that PET-PHEMA yields a fast growth of cells followed by muscle fibers of excellent levels of differentiation compared to pristine PET or standard microscope glass slides. The positive effect is exacerbated by crosslinking PHEMA chains with ethylene glycol dimethacrylate at initial HEMA/EGDMA concentration ratio = 9/1. This works conclusively shows that in situ generated diazonium salts provide aryl layers for the efficient UV-induced grafting of biocompatible coating that beneficially serve as platform for cell attachment and growth of muscle fibers. Beyond this work, diazonium coupling agents constitute the corner stone of next generation processes for building flexible platforms for cell adhesion and uses thereof.\",\"PeriodicalId\":22129,\"journal\":{\"name\":\"Surfaces\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20944/preprints202111.0294.v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202111.0294.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexible, Biocompatible PET Sheets: a Platform for Attachment, Proliferation and Differentiation of Eukaryotic Cells
Transparent, flexible, biaxially oriented polyethylene terephthalate (PET) sheets were modified by bioactive polymer-fibronectin top layers for the attachment of cells and growth of muscle fibers. Towards this end, PET sheets were grafted with 4-(dimethylamino)phenyl (DMA) groups from the in situ generated corresponding diazonium compound. The arylated sheets served as macro-hydrogen donors for benzophenone and the growth of poly(2-hydroxy ethyl methacrylate) (PHEMA) top layer by surface-confined free radical photopolymerization. The PET-PHEMA sheets were further grafted with fibronectin (FBN) through the 1,1-carbonyldiimidazole coupling procedures. The bioactive PET-PHEMA-I-FBN was then employed as a platform for the attachment, proliferation and differentiation of eukaryotic cells which after a few days gave remarkable muscle fibers, of ~120 µm length and ~45 µm thickness. We demonstrate that PET-PHEMA yields a fast growth of cells followed by muscle fibers of excellent levels of differentiation compared to pristine PET or standard microscope glass slides. The positive effect is exacerbated by crosslinking PHEMA chains with ethylene glycol dimethacrylate at initial HEMA/EGDMA concentration ratio = 9/1. This works conclusively shows that in situ generated diazonium salts provide aryl layers for the efficient UV-induced grafting of biocompatible coating that beneficially serve as platform for cell attachment and growth of muscle fibers. Beyond this work, diazonium coupling agents constitute the corner stone of next generation processes for building flexible platforms for cell adhesion and uses thereof.