Enrique Eugenio Batiz‐Zuk, G. Christodoulakis, S. Poon
{"title":"结构信用损失分布估计量的鲁棒性","authors":"Enrique Eugenio Batiz‐Zuk, G. Christodoulakis, S. Poon","doi":"10.21314/JCR.2015.193","DOIUrl":null,"url":null,"abstract":"This paper provides Monte Carlo results for the performance of the method of moments (MM), maximum likelihood (ML) and ordinary least squares (OLS) estimators of the credit loss distribution implied by the Merton (1974) and Vasicek (1987, 2002) framework when the common or idiosyncratic asset-return factor is non-Gaussian and, thus, the true credit loss distribution deviates from the theoretical one. We find that OLS and ML outperform MM in small samples when the true data-generating process comprises a non-Gaussian common factor. This result intensifies as the sample size increases and holds in all cases. We also find that all three estimators present a large bias and variance when the true data-generating process comprises a non-Gaussian idiosyncratic factor. This last result holds independently of the sample size, across different asset correlation levels, and it intensifies for positive shape parameter values.","PeriodicalId":44244,"journal":{"name":"Journal of Credit Risk","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Robustness of Estimators in Structural Credit Loss Distributions\",\"authors\":\"Enrique Eugenio Batiz‐Zuk, G. Christodoulakis, S. Poon\",\"doi\":\"10.21314/JCR.2015.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides Monte Carlo results for the performance of the method of moments (MM), maximum likelihood (ML) and ordinary least squares (OLS) estimators of the credit loss distribution implied by the Merton (1974) and Vasicek (1987, 2002) framework when the common or idiosyncratic asset-return factor is non-Gaussian and, thus, the true credit loss distribution deviates from the theoretical one. We find that OLS and ML outperform MM in small samples when the true data-generating process comprises a non-Gaussian common factor. This result intensifies as the sample size increases and holds in all cases. We also find that all three estimators present a large bias and variance when the true data-generating process comprises a non-Gaussian idiosyncratic factor. This last result holds independently of the sample size, across different asset correlation levels, and it intensifies for positive shape parameter values.\",\"PeriodicalId\":44244,\"journal\":{\"name\":\"Journal of Credit Risk\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2015-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Credit Risk\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/JCR.2015.193\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Credit Risk","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JCR.2015.193","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
The Robustness of Estimators in Structural Credit Loss Distributions
This paper provides Monte Carlo results for the performance of the method of moments (MM), maximum likelihood (ML) and ordinary least squares (OLS) estimators of the credit loss distribution implied by the Merton (1974) and Vasicek (1987, 2002) framework when the common or idiosyncratic asset-return factor is non-Gaussian and, thus, the true credit loss distribution deviates from the theoretical one. We find that OLS and ML outperform MM in small samples when the true data-generating process comprises a non-Gaussian common factor. This result intensifies as the sample size increases and holds in all cases. We also find that all three estimators present a large bias and variance when the true data-generating process comprises a non-Gaussian idiosyncratic factor. This last result holds independently of the sample size, across different asset correlation levels, and it intensifies for positive shape parameter values.
期刊介绍:
With the re-writing of the Basel accords in international banking and their ensuing application, interest in credit risk has never been greater. The Journal of Credit Risk focuses on the measurement and management of credit risk, the valuation and hedging of credit products, and aims to promote a greater understanding in the area of credit risk theory and practice. The Journal of Credit Risk considers submissions in the form of research papers and technical papers, on topics including, but not limited to: Modelling and management of portfolio credit risk Recent advances in parameterizing credit risk models: default probability estimation, copulas and credit risk correlation, recoveries and loss given default, collateral valuation, loss distributions and extreme events Pricing and hedging of credit derivatives Structured credit products and securitizations e.g. collateralized debt obligations, synthetic securitizations, credit baskets, etc. Measuring managing and hedging counterparty credit risk Credit risk transfer techniques Liquidity risk and extreme credit events Regulatory issues, such as Basel II, internal ratings systems, credit-scoring techniques and credit risk capital adequacy.