A. Shende, Shiv Kumar Gupta, Ashish Kore, Poorva Singh
{"title":"Weyl半金属SrSi2中压力驱动的Weyl拓扑绝缘子相变","authors":"A. Shende, Shiv Kumar Gupta, Ashish Kore, Poorva Singh","doi":"10.5488/CMP.26.23707","DOIUrl":null,"url":null,"abstract":"Using DFT-based first-principles calculations, we demonstrate the tuning of the electronic structure of Weyl semimetal SrSi2 via external uniaxial strain. The uniaxial strain facilitates the opening of bandgap along Γ-X direction and subsequent band inversion between Si p and Sr d orbitals. Z2 invariants and surface states reveal conclusively that SrSi2 under uniaxial strain is a strong topological insulator. Hence, uniaxial strain drives the semimetallic SrSi2 into fully gapped topological insulating state depicting a semimetal to topological insulator phase transition. Our results highlight the suitability of uniaxial strain to gain control over the topological phase transitions and topological states in SrSi2.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"28 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure driven Weyl-topological insulator phase transition in Weyl semimetal SrSi2\",\"authors\":\"A. Shende, Shiv Kumar Gupta, Ashish Kore, Poorva Singh\",\"doi\":\"10.5488/CMP.26.23707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using DFT-based first-principles calculations, we demonstrate the tuning of the electronic structure of Weyl semimetal SrSi2 via external uniaxial strain. The uniaxial strain facilitates the opening of bandgap along Γ-X direction and subsequent band inversion between Si p and Sr d orbitals. Z2 invariants and surface states reveal conclusively that SrSi2 under uniaxial strain is a strong topological insulator. Hence, uniaxial strain drives the semimetallic SrSi2 into fully gapped topological insulating state depicting a semimetal to topological insulator phase transition. Our results highlight the suitability of uniaxial strain to gain control over the topological phase transitions and topological states in SrSi2.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.26.23707\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.26.23707","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Pressure driven Weyl-topological insulator phase transition in Weyl semimetal SrSi2
Using DFT-based first-principles calculations, we demonstrate the tuning of the electronic structure of Weyl semimetal SrSi2 via external uniaxial strain. The uniaxial strain facilitates the opening of bandgap along Γ-X direction and subsequent band inversion between Si p and Sr d orbitals. Z2 invariants and surface states reveal conclusively that SrSi2 under uniaxial strain is a strong topological insulator. Hence, uniaxial strain drives the semimetallic SrSi2 into fully gapped topological insulating state depicting a semimetal to topological insulator phase transition. Our results highlight the suitability of uniaxial strain to gain control over the topological phase transitions and topological states in SrSi2.
期刊介绍:
Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.