Aman Arora, Debadrata Sarkar, Arunabha Majumder, Soumen Sen, S. Roy
{"title":"基于杂交神经网络的辅助机器人气动人工肌肉行为建模","authors":"Aman Arora, Debadrata Sarkar, Arunabha Majumder, Soumen Sen, S. Roy","doi":"10.1108/ir-03-2022-0060","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to devise a first-of-its-kind methodology to determine the design, operating conditions and actuation strategy of pneumatic artificial muscles (PAMs) for assistive robotic applications. This requires extensive characterization, data set generation and meaningful modelling between PAM characteristics and design variables. Such a characterization should cover a wide range of design and operation parameters. This is a stepping stone towards generating a design guide for this highly popular compliant actuator, just like any conventional element of a mechanism.\n\n\nDesign/methodology/approach\nCharacterization of a large pool of custom fabricated PAMs of varying designs is performed to determine their static and dynamic behaviours. Metaheuristic optimizer-based artificial neural network (ANN) structures are used to determine eight different models representing PAM behaviour. The assistance of knee flexion during level walking is targeted for evaluating the applicability of the developed actuator by attaching a PAM across the joint. Accordingly, the PAM design and the actuation strategy are optimized through a tabletop emulator.\n\n\nFindings\nThe dependence of passive length, static contraction, dynamic step response for inflation and deflation of the PAMs on their design dimensions and operating parameters is successfully modelled by the ANNs. The efficacy of these models is investigated to successfully optimize the PAM design, operation parameters and actuation strategy for using a PAM in assisting knee flexion in human gait.\n\n\nOriginality/value\nCharacterization of static and the dynamic behaviour of a large pool of PAMs with varying designs over a wide range of operating conditions is the novel feature in this article. A lucid customizable fabrication technique is discussed to obtain a wide variety of PAM designs. Metaheuristic-based ANNs are used for tackling high non-linearity in data while modelling the PAM behaviour. An innovative tabletop emulator is used for investigating the utility of the models in the possible application of PAMs in assistive robotics.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":"87 1","pages":"56-69"},"PeriodicalIF":1.9000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybridized neural network inspired behavioural modelling of pneumatic artificial muscles for assistive robotic applications\",\"authors\":\"Aman Arora, Debadrata Sarkar, Arunabha Majumder, Soumen Sen, S. Roy\",\"doi\":\"10.1108/ir-03-2022-0060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis paper aims to devise a first-of-its-kind methodology to determine the design, operating conditions and actuation strategy of pneumatic artificial muscles (PAMs) for assistive robotic applications. This requires extensive characterization, data set generation and meaningful modelling between PAM characteristics and design variables. Such a characterization should cover a wide range of design and operation parameters. This is a stepping stone towards generating a design guide for this highly popular compliant actuator, just like any conventional element of a mechanism.\\n\\n\\nDesign/methodology/approach\\nCharacterization of a large pool of custom fabricated PAMs of varying designs is performed to determine their static and dynamic behaviours. Metaheuristic optimizer-based artificial neural network (ANN) structures are used to determine eight different models representing PAM behaviour. The assistance of knee flexion during level walking is targeted for evaluating the applicability of the developed actuator by attaching a PAM across the joint. Accordingly, the PAM design and the actuation strategy are optimized through a tabletop emulator.\\n\\n\\nFindings\\nThe dependence of passive length, static contraction, dynamic step response for inflation and deflation of the PAMs on their design dimensions and operating parameters is successfully modelled by the ANNs. The efficacy of these models is investigated to successfully optimize the PAM design, operation parameters and actuation strategy for using a PAM in assisting knee flexion in human gait.\\n\\n\\nOriginality/value\\nCharacterization of static and the dynamic behaviour of a large pool of PAMs with varying designs over a wide range of operating conditions is the novel feature in this article. A lucid customizable fabrication technique is discussed to obtain a wide variety of PAM designs. Metaheuristic-based ANNs are used for tackling high non-linearity in data while modelling the PAM behaviour. An innovative tabletop emulator is used for investigating the utility of the models in the possible application of PAMs in assistive robotics.\\n\",\"PeriodicalId\":54987,\"journal\":{\"name\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"volume\":\"87 1\",\"pages\":\"56-69\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-03-2022-0060\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-03-2022-0060","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Hybridized neural network inspired behavioural modelling of pneumatic artificial muscles for assistive robotic applications
Purpose
This paper aims to devise a first-of-its-kind methodology to determine the design, operating conditions and actuation strategy of pneumatic artificial muscles (PAMs) for assistive robotic applications. This requires extensive characterization, data set generation and meaningful modelling between PAM characteristics and design variables. Such a characterization should cover a wide range of design and operation parameters. This is a stepping stone towards generating a design guide for this highly popular compliant actuator, just like any conventional element of a mechanism.
Design/methodology/approach
Characterization of a large pool of custom fabricated PAMs of varying designs is performed to determine their static and dynamic behaviours. Metaheuristic optimizer-based artificial neural network (ANN) structures are used to determine eight different models representing PAM behaviour. The assistance of knee flexion during level walking is targeted for evaluating the applicability of the developed actuator by attaching a PAM across the joint. Accordingly, the PAM design and the actuation strategy are optimized through a tabletop emulator.
Findings
The dependence of passive length, static contraction, dynamic step response for inflation and deflation of the PAMs on their design dimensions and operating parameters is successfully modelled by the ANNs. The efficacy of these models is investigated to successfully optimize the PAM design, operation parameters and actuation strategy for using a PAM in assisting knee flexion in human gait.
Originality/value
Characterization of static and the dynamic behaviour of a large pool of PAMs with varying designs over a wide range of operating conditions is the novel feature in this article. A lucid customizable fabrication technique is discussed to obtain a wide variety of PAM designs. Metaheuristic-based ANNs are used for tackling high non-linearity in data while modelling the PAM behaviour. An innovative tabletop emulator is used for investigating the utility of the models in the possible application of PAMs in assistive robotics.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.