{"title":"基于多视角先验地图的水下路径规划方法","authors":"Daniel Cagara, M. Dunbabin, P. Rigby","doi":"10.1109/ICRA40945.2020.9196680","DOIUrl":null,"url":null,"abstract":"This paper presents a path planning methodology which enables Autonomous Underwater Vehicles (AUVs) to navigate in shallow complex environments such as coral reefs. The approach leverages prior information from an aerial photographic survey, and derived bathymetric information of the corresponding area. From these prior maps, a set of features is obtained which define an expected arrangement of objects and bathymetry likely to be perceived by the AUV when underwater. A navigation graph is then constructed by predicting the arrangement of features visible from a set of test points within the prior, which allows the calculation of the shortest paths from any pair of start and destination points. A maximum likelihood function is defined which allows the AUV to match its observations to the navigation graph as it undertakes its mission. To improve robustness, the history of observed features are retained to facilitate possible recovery from non-detectable or misclassified objects. The approach is evaluated using a photo-realistic simulated environment, and results illustrate the merits of the approach even when only a relatively small number of features can be identified from the prior map.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"78 1","pages":"8573-8579"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Feature-Based Underwater Path Planning Approach using Multiple Perspective Prior Maps\",\"authors\":\"Daniel Cagara, M. Dunbabin, P. Rigby\",\"doi\":\"10.1109/ICRA40945.2020.9196680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a path planning methodology which enables Autonomous Underwater Vehicles (AUVs) to navigate in shallow complex environments such as coral reefs. The approach leverages prior information from an aerial photographic survey, and derived bathymetric information of the corresponding area. From these prior maps, a set of features is obtained which define an expected arrangement of objects and bathymetry likely to be perceived by the AUV when underwater. A navigation graph is then constructed by predicting the arrangement of features visible from a set of test points within the prior, which allows the calculation of the shortest paths from any pair of start and destination points. A maximum likelihood function is defined which allows the AUV to match its observations to the navigation graph as it undertakes its mission. To improve robustness, the history of observed features are retained to facilitate possible recovery from non-detectable or misclassified objects. The approach is evaluated using a photo-realistic simulated environment, and results illustrate the merits of the approach even when only a relatively small number of features can be identified from the prior map.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"78 1\",\"pages\":\"8573-8579\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9196680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9196680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Feature-Based Underwater Path Planning Approach using Multiple Perspective Prior Maps
This paper presents a path planning methodology which enables Autonomous Underwater Vehicles (AUVs) to navigate in shallow complex environments such as coral reefs. The approach leverages prior information from an aerial photographic survey, and derived bathymetric information of the corresponding area. From these prior maps, a set of features is obtained which define an expected arrangement of objects and bathymetry likely to be perceived by the AUV when underwater. A navigation graph is then constructed by predicting the arrangement of features visible from a set of test points within the prior, which allows the calculation of the shortest paths from any pair of start and destination points. A maximum likelihood function is defined which allows the AUV to match its observations to the navigation graph as it undertakes its mission. To improve robustness, the history of observed features are retained to facilitate possible recovery from non-detectable or misclassified objects. The approach is evaluated using a photo-realistic simulated environment, and results illustrate the merits of the approach even when only a relatively small number of features can be identified from the prior map.