{"title":"区间截尾数据空间脆弱性的半参数治愈率比例Odds模型","authors":"Yiqi Bao, V. Cancho, F. Louzada, A. K. Suzuki","doi":"10.1142/S2424922X19500050","DOIUrl":null,"url":null,"abstract":"In this work, we proposed the semi-parametric cure rate models with independent and dependent spatial frailties. These models extend the proportional odds cure models and allow for spatial correlations by including spatial frailty for the interval censored data setting. Moreover, since these cure models are obtained by considering the occurrence of an event of interest is caused by the presence of any nonobserved risks, we also study the complementary cure model, that is, the cure models are obtained by assuming the occurrence of an event of interest is caused when all of the nonobserved risks are activated. The MCMC method is used in a Bayesian approach for inferential purposes. We conduct an influence diagnostic through the diagnostic measures in order to detect possible influential or extreme observations that can cause distortions on the results of the analysis. Finally, the proposed models are applied to the analysis of a real data set.","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"68 1","pages":"1950005:1-1950005:32"},"PeriodicalIF":0.5000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semi-Parametric Cure Rate Proportional Odds Models with Spatial Frailties for Interval-Censored Data\",\"authors\":\"Yiqi Bao, V. Cancho, F. Louzada, A. K. Suzuki\",\"doi\":\"10.1142/S2424922X19500050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we proposed the semi-parametric cure rate models with independent and dependent spatial frailties. These models extend the proportional odds cure models and allow for spatial correlations by including spatial frailty for the interval censored data setting. Moreover, since these cure models are obtained by considering the occurrence of an event of interest is caused by the presence of any nonobserved risks, we also study the complementary cure model, that is, the cure models are obtained by assuming the occurrence of an event of interest is caused when all of the nonobserved risks are activated. The MCMC method is used in a Bayesian approach for inferential purposes. We conduct an influence diagnostic through the diagnostic measures in order to detect possible influential or extreme observations that can cause distortions on the results of the analysis. Finally, the proposed models are applied to the analysis of a real data set.\",\"PeriodicalId\":47145,\"journal\":{\"name\":\"Advances in Data Science and Adaptive Analysis\",\"volume\":\"68 1\",\"pages\":\"1950005:1-1950005:32\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Science and Adaptive Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2424922X19500050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424922X19500050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Semi-Parametric Cure Rate Proportional Odds Models with Spatial Frailties for Interval-Censored Data
In this work, we proposed the semi-parametric cure rate models with independent and dependent spatial frailties. These models extend the proportional odds cure models and allow for spatial correlations by including spatial frailty for the interval censored data setting. Moreover, since these cure models are obtained by considering the occurrence of an event of interest is caused by the presence of any nonobserved risks, we also study the complementary cure model, that is, the cure models are obtained by assuming the occurrence of an event of interest is caused when all of the nonobserved risks are activated. The MCMC method is used in a Bayesian approach for inferential purposes. We conduct an influence diagnostic through the diagnostic measures in order to detect possible influential or extreme observations that can cause distortions on the results of the analysis. Finally, the proposed models are applied to the analysis of a real data set.